Benchmarking ChatGPT, Codeium, and GitHub Copilot: A Comparative Study of AI-Driven Programming and Debugging Assistants
- URL: http://arxiv.org/abs/2409.19922v1
- Date: Mon, 30 Sep 2024 03:53:40 GMT
- Title: Benchmarking ChatGPT, Codeium, and GitHub Copilot: A Comparative Study of AI-Driven Programming and Debugging Assistants
- Authors: Md Sultanul Islam Ovi, Nafisa Anjum, Tasmina Haque Bithe, Md. Mahabubur Rahman, Mst. Shahnaj Akter Smrity,
- Abstract summary: Large language models (LLMs) have become essential for tasks like code generation, bug fixing, and optimization.
This paper presents a comparative study of ChatGPT, Codeium, and GitHub Copilot, evaluating their performance on LeetCode problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing adoption of AI-driven tools in software development, large language models (LLMs) have become essential for tasks like code generation, bug fixing, and optimization. Tools like ChatGPT, GitHub Copilot, and Codeium provide valuable assistance in solving programming challenges, yet their effectiveness remains underexplored. This paper presents a comparative study of ChatGPT, Codeium, and GitHub Copilot, evaluating their performance on LeetCode problems across varying difficulty levels and categories. Key metrics such as success rates, runtime efficiency, memory usage, and error-handling capabilities are assessed. GitHub Copilot showed superior performance on easier and medium tasks, while ChatGPT excelled in memory efficiency and debugging. Codeium, though promising, struggled with more complex problems. Despite their strengths, all tools faced challenges in handling harder problems. These insights provide a deeper understanding of each tool's capabilities and limitations, offering guidance for developers and researchers seeking to optimize AI integration in coding workflows.
Related papers
- CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
Large language models (LLMs) can act as agents with capabilities to self-refine and improve generated code autonomously.
We propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process.
Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions.
arXiv Detail & Related papers (2024-11-07T00:09:54Z) - Transforming Software Development: Evaluating the Efficiency and Challenges of GitHub Copilot in Real-World Projects [0.0]
GitHub Copilot is an AI-powered coding assistant.
This study evaluates the efficiency gains, areas for improvement, and emerging challenges of using GitHub Copilot.
arXiv Detail & Related papers (2024-06-25T19:51:21Z) - Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPT is an AI tool that enhances software production efficiency.
We estimate ChatGPT's effects on the number of git pushes, repositories, and unique developers per 100,000 people.
These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.
arXiv Detail & Related papers (2024-06-16T19:11:15Z) - Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases [2.808331566391181]
We propose a novel tool, Code, to address these issues.
Our study highlights a significant gap in current tools and methodologies.
Our formative study demonstrates how effectively the tool reduces the time developers spend navigating documentation.
arXiv Detail & Related papers (2024-05-10T06:58:31Z) - Rocks Coding, Not Development--A Human-Centric, Experimental Evaluation
of LLM-Supported SE Tasks [9.455579863269714]
We examined whether and to what degree working with ChatGPT was helpful in the coding task and typical software development task.
We found that while ChatGPT performed well in solving simple coding problems, its performance in supporting typical software development tasks was not that good.
Our study thus provides first-hand insights into using ChatGPT to fulfill software engineering tasks with real-world developers.
arXiv Detail & Related papers (2024-02-08T13:07:31Z) - Exploring the Problems, their Causes and Solutions of AI Pair Programming: A Study on GitHub and Stack Overflow [6.724815667295355]
GitHub Copilot, the AI programmer pair, utilize machine learning models trained on a large corpus of code snippets to generate code suggestions.
Despite its popularity in software development, there is limited empirical evidence on the actual experiences of practitioners who work with Copilot.
We collected data from 473 GitHub issues, 706 GitHub discussions, and 142 Stack Overflow posts.
arXiv Detail & Related papers (2023-11-02T06:24:38Z) - ControlLLM: Augment Language Models with Tools by Searching on Graphs [97.62758830255002]
We present ControlLLM, a novel framework that enables large language models (LLMs) to utilize multi-modal tools for solving real-world tasks.
Our framework comprises three key components: (1) a textittask decomposer that breaks down a complex task into clear subtasks with well-defined inputs and outputs; (2) a textitThoughts-on-Graph (ToG) paradigm that searches the optimal solution path on a pre-built tool graph; and (3) an textitexecution engine with a rich toolbox that interprets the solution path and runs the
arXiv Detail & Related papers (2023-10-26T21:57:21Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics.
The paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration.
arXiv Detail & Related papers (2023-05-19T17:25:54Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
We introduce AlphaCode, a system for code generation that can create novel solutions to problems that require deeper reasoning.
In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3%.
arXiv Detail & Related papers (2022-02-08T23:16:31Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
We introduce APPS, a benchmark for code generation.
Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges.
Recent models such as GPT-Neo can pass approximately 15% of the test cases of introductory problems.
arXiv Detail & Related papers (2021-05-20T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.