Classification with a Network of Partially Informative Agents: Enabling Wise Crowds from Individually Myopic Classifiers
- URL: http://arxiv.org/abs/2409.19947v1
- Date: Mon, 30 Sep 2024 04:59:51 GMT
- Title: Classification with a Network of Partially Informative Agents: Enabling Wise Crowds from Individually Myopic Classifiers
- Authors: Tong Yao, Shreyas Sundaram,
- Abstract summary: We consider the problem of classification with a (peer-to-peer) network of heterogeneous and partially informative agents.
We propose an iterative algorithm that uses the posterior probabilities of the local and updates each agent's local belief on all the possible classes.
We show that under certain assumptions, the beliefs on the true class converge to oneally almost surely.
- Score: 1.3417382097912094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of classification with a (peer-to-peer) network of heterogeneous and partially informative agents, each receiving local data generated by an underlying true class, and equipped with a classifier that can only distinguish between a subset of the entire set of classes. We propose an iterative algorithm that uses the posterior probabilities of the local classifier and recursively updates each agent's local belief on all the possible classes, based on its local signals and belief information from its neighbors. We then adopt a novel distributed min-rule to update each agent's global belief and enable learning of the true class for all agents. We show that under certain assumptions, the beliefs on the true class converge to one asymptotically almost surely. We provide the asymptotic convergence rate, and demonstrate the performance of our algorithm through simulation with image data and experimented with random forest classifiers and MobileNet.
Related papers
- Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals [4.384272169863716]
Interpretability is crucial for machine learning algorithms in high-stakes medical applications.
Attri-Net is an inherently interpretable model for multi-label classification that provides local and global explanations.
arXiv Detail & Related papers (2024-06-08T13:52:02Z) - Bayesian Strategic Classification [11.439576371711711]
We study the study of partial information release by the learner in strategic classification.
We show how such partial information release can, counter-intuitively, benefit the learner's accuracy, despite increasing agents' abilities to manipulate.
arXiv Detail & Related papers (2024-02-13T19:51:49Z) - Class Distribution Shifts in Zero-Shot Learning: Learning Robust Representations [3.8980564330208662]
We propose a model that assumes that the attribute responsible for the shift is unknown in advance.
We show that our approach improves generalization on diverse class distributions in both simulations and real-world datasets.
arXiv Detail & Related papers (2023-11-30T14:14:31Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - An Upper Bound for the Distribution Overlap Index and Its Applications [18.481370450591317]
This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions.
The proposed bound shows its value in one-class classification and domain shift analysis.
Our work shows significant promise toward broadening the applications of overlap-based metrics.
arXiv Detail & Related papers (2022-12-16T20:02:03Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Hyperdimensional Computing for Efficient Distributed Classification with
Randomized Neural Networks [5.942847925681103]
We study distributed classification, which can be employed in situations were data cannot be stored at a central location nor shared.
We propose a more efficient solution for distributed classification by making use of a lossy compression approach applied when sharing the local classifiers with other agents.
arXiv Detail & Related papers (2021-06-02T01:33:56Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
This paper jointly enforces visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification.
Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks.
arXiv Detail & Related papers (2020-07-21T14:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.