論文の概要: Domain Consistency Representation Learning for Lifelong Person Re-Identification
- arxiv url: http://arxiv.org/abs/2409.19954v2
- Date: Tue, 19 Nov 2024 08:17:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:34:33.080804
- Title: Domain Consistency Representation Learning for Lifelong Person Re-Identification
- Title(参考訳): 生涯的人物認識のためのドメイン一貫性表現学習
- Authors: Shiben Liu, Qiang Wang, Huijie Fan, Weihong Ren, Baojie Fan, Yandong Tang,
- Abstract要約: LReID(Lifelong person re-identification)は、連続データから学ぶ際に、ドメイン内識別とドメイン間ギャップの間に矛盾した関係を示す。
ドメイン内識別とドメイン間ギャップのバランスをとるために,グローバルおよび属性ワイド表現を探索する新しいドメイン一貫性表現学習(DCR)モデルを提案する。
我々のモデルは最先端のLReID法と比較して優れた性能が得られる。
- 参考スコア(独自算出の注目度): 13.02156660844767
- License:
- Abstract: Lifelong person re-identification (LReID) exhibits a contradictory relationship between intra-domain discrimination and inter-domain gaps when learning from continuous data. Intra-domain discrimination focuses on individual nuances (e.g. clothing type, accessories, etc.), while inter-domain gaps emphasize domain consistency. Achieving a trade-off between maximizing intra-domain discrimination and minimizing inter-domain gaps is a crucial challenge for improving LReID performance. Most existing methods aim to reduce inter-domain gaps through knowledge distillation to maintain domain consistency. However, they often ignore intra-domain discrimination. To address this challenge, we propose a novel domain consistency representation learning (DCR) model that explores global and attribute-wise representations as a bridge to balance intra-domain discrimination and inter-domain gaps. At the intra-domain level, we explore the complementary relationship between global and attribute-wise representations to improve discrimination among similar identities. Excessive learning intra-domain discrimination can lead to catastrophic forgetting. We further develop an attribute-oriented anti-forgetting (AF) strategy that explores attribute-wise representations to enhance inter-domain consistency, and propose a knowledge consolidation (KC) strategy to facilitate knowledge transfer. Extensive experiments show that our DCR model achieves superior performance compared to state-of-the-art LReID methods. Our code will be available soon.
- Abstract(参考訳): LReID(Lifelong person re-identification)は、連続データから学ぶ際に、ドメイン内識別とドメイン間ギャップの間に矛盾した関係を示す。
ドメイン内の識別は個々のニュアンス(例えば衣服の種類、アクセサリーなど)に焦点を当て、ドメイン間のギャップはドメインの一貫性を強調します。
ドメイン内差別の最大化とドメイン間ギャップの最小化のトレードオフを達成することは、LReID性能を改善する上で重要な課題である。
既存の手法の多くは、知識蒸留によってドメイン間のギャップを減らし、ドメインの一貫性を維持することを目的としている。
しかし、彼らはしばしばドメイン内の差別を無視します。
この課題に対処するために,ドメイン内識別とドメイン間ギャップのバランスをとるブリッジとして,グローバルおよび属性ワイド表現を探索する新しいドメイン一貫性表現学習(DCR)モデルを提案する。
ドメイン内レベルでは,グローバル表現と属性表現の相補関係を考察し,類似したアイデンティティの識別を改善する。
ドメイン内差別の過剰な学習は、破滅的な忘れを招きかねない。
さらに,属性指向のアンチフォッゲッティング(AF)戦略を開発し,ドメイン間の一貫性を高めるために属性指向の表現を探索し,知識伝達を促進する知識統合(KC)戦略を提案する。
我々のDCRモデルは最先端のLReID法と比較して優れた性能を示す。
私たちのコードはまもなく利用可能になります。
関連論文リスト
- Cross-Domain Policy Transfer by Representation Alignment via Multi-Domain Behavioral Cloning [13.674493608667627]
本稿では、ドメイン間の共有潜在表現と、その上に共通の抽象ポリシーを学習する、ドメイン間ポリシー転送のためのシンプルなアプローチを提案する。
提案手法は,プロキシタスクの不整合軌道上でのマルチドメイン動作のクローン化と,ドメイン間のアライメントを促進するために,最大平均不整合(MMD)を正規化用語として利用する。
論文 参考訳(メタデータ) (2024-07-24T00:13:00Z) - Joint Identifiability of Cross-Domain Recommendation via Hierarchical Subspace Disentanglement [19.29182848154183]
CDR(Cross-Domain Recommendation)はドメイン間の効果的な知識伝達を実現する。
CDRは、ユーザ表現を2つのドメインにまたがる共同分布として記述するが、これらの方法は、その共同識別可能性を考慮していない。
本稿では,階層的部分空間のアンタングル化手法を提案し,ドメイン間結合分布の結合識別可能性について検討する。
論文 参考訳(メタデータ) (2024-04-06T03:11:31Z) - MADI: Inter-domain Matching and Intra-domain Discrimination for
Cross-domain Speech Recognition [9.385527436874096]
教師なしドメイン適応(UDA)は、ラベルなしのターゲットドメインの性能を改善することを目的としている。
ドメイン間マッチングとドメイン内識別(MADI)を用いた新しいUDAアプローチを提案する。
MADIは、クロスデバイスとクロス環境ASRの相対単語誤り率(WER)をそれぞれ17.7%、22.8%削減する。
論文 参考訳(メタデータ) (2023-02-22T09:11:06Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
ドメインシフトを軽減するために、クロスドメインレグレッタを学ぶことが不可欠です。
本稿では、より効果的なドメイン間回帰モデルを求めるために、ABRNet(Adversarial Bi-Regressor Network)を提案する。
論文 参考訳(メタデータ) (2022-09-20T18:38:28Z) - Unsupervised Domain Adaptation via Style-Aware Self-intermediate Domain [52.783709712318405]
非教師なしドメイン適応(UDA)は、ラベル豊富なソースドメインから関連するがラベルのないターゲットドメインに知識を伝達する、かなりの注目を集めている。
本研究では,大規模なドメインギャップと伝達知識を橋渡しし,クラス非ネイティブ情報の損失を軽減するために,SAFF(style-aware feature fusion)法を提案する。
論文 参考訳(メタデータ) (2022-09-05T10:06:03Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised Domain Adaptive (UDA) Person Re-identification (ReID) は、ラベル付きソースドメインからラベル付きターゲットドメインへ知識を転送することを目的としている。
ひとつの課題は、トレーニング用に信頼できるラベルでターゲットドメインサンプルを生成する方法だ。
ディスタングルメントに基づくクロスドメイン機能拡張戦略を提案する。
論文 参考訳(メタデータ) (2021-03-25T15:28:41Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。