SuperPose: Improved 6D Pose Estimation with Robust Tracking and Mask-Free Initialization
- URL: http://arxiv.org/abs/2409.19986v2
- Date: Sun, 20 Oct 2024 17:57:05 GMT
- Title: SuperPose: Improved 6D Pose Estimation with Robust Tracking and Mask-Free Initialization
- Authors: Yu Deng, Jiahong Xue, Teng Cao, Yingxing Zhang, Lanxi Wen, Yiyang Chen,
- Abstract summary: We developed a robust solution for real-time 6D object detection in industrial applications by integrating FoundationPose, SAM2, and LightGlue.
The algorithm requires only a CAD model of the target object, with the user clicking on its location in the live feed during the initial setup.
Tested on the YCB dataset and industrial components such as bleach cleanser and gears, the algorithm demonstrated reliable 6D detection and tracking.
- Score: 5.298176595324931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We developed a robust solution for real-time 6D object detection in industrial applications by integrating FoundationPose, SAM2, and LightGlue, eliminating the need for retraining. Our approach addresses two key challenges: the requirement for an initial object mask in the first frame in FoundationPose and issues with tracking loss and automatic rotation for symmetric objects. The algorithm requires only a CAD model of the target object, with the user clicking on its location in the live feed during the initial setup. Once set, the algorithm automatically saves a reference image of the object and, in subsequent runs, employs LightGlue for feature matching between the object and the real-time scene, providing an initial prompt for detection. Tested on the YCB dataset and industrial components such as bleach cleanser and gears, the algorithm demonstrated reliable 6D detection and tracking. By integrating SAM2 and FoundationPose, we effectively mitigated common limitations such as the problem of tracking loss, ensuring continuous and accurate tracking under challenging conditions like occlusion or rapid movement.
Related papers
- Line-based 6-DoF Object Pose Estimation and Tracking With an Event Camera [19.204896246140155]
Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur.
We propose a line-based robust pose estimation and tracking method for planar or non-planar objects using an event camera.
arXiv Detail & Related papers (2024-08-06T14:36:43Z) - TrackAgent: 6D Object Tracking via Reinforcement Learning [24.621588217873395]
We propose to simplify object tracking to a reinforced point cloud (depth only) alignment task.
This allows us to train a streamlined approach from scratch with limited amounts of sparse 3D point clouds.
We also show that the RL agent's uncertainty and a rendering-based mask propagation are effective reinitialization triggers.
arXiv Detail & Related papers (2023-07-28T17:03:00Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose.
We propose a rigidity-aware detection method exploiting the fact that, in 6D pose estimation, the target objects are rigid.
Key to the success of our approach is a visibility map, which we propose to build using a minimum barrier distance between every pixel in the bounding box and the box boundary.
arXiv Detail & Related papers (2023-03-22T09:02:54Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
This study offers a bi-directional matching algorithm for multi-object tracking.
A stranded area is used in the matching algorithm to temporarily store the objects that fail to be tracked.
In the MOT17 challenge, the proposed algorithm achieves 63.4% MOTA, 55.3% IDF1, and 20.1 FPS tracking speed.
arXiv Detail & Related papers (2023-03-15T08:38:08Z) - Self-Supervised Object Detection via Generative Image Synthesis [106.65384648377349]
We present the first end-to-end analysis-by synthesis framework with controllable GANs for the task of self-supervised object detection.
We use collections of real world images without bounding box annotations to learn to synthesize and detect objects.
Our work advances the field of self-supervised object detection by introducing a successful new paradigm of using controllable GAN-based image synthesis for it.
arXiv Detail & Related papers (2021-10-19T11:04:05Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
We propose an Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking.
To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm.
We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD.
arXiv Detail & Related papers (2020-02-13T15:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.