論文の概要: Numerically Robust Fixed-Point Smoothing Without State Augmentation
- arxiv url: http://arxiv.org/abs/2409.20004v1
- Date: Mon, 30 Sep 2024 06:56:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:05:29.141006
- Title: Numerically Robust Fixed-Point Smoothing Without State Augmentation
- Title(参考訳): 状態拡張のない数値ロバスト固定点平滑化
- Authors: Nicholas Krämer,
- Abstract要約: 未知の初期条件を持つ力学系に対するガウス的不動点スムースラーの新しい定式化を導入する。
従来のアプローチとは対照的に、我々の視点は、数値的にロバストなチョーレスキー形式を受け入れている。
実験では、我々のアルゴリズムのJAX実装が、最も速いメソッドのランタイムとどのように一致しているかを示します。
- 参考スコア(独自算出の注目度): 6.0735728088312175
- License:
- Abstract: Practical implementations of Gaussian smoothing algorithms have received a great deal of attention in the last 60 years. However, almost all work focuses on estimating complete time series (''fixed-interval smoothing'', $\mathcal{O}(K)$ memory) through variations of the Rauch--Tung--Striebel smoother, rarely on estimating the initial states (''fixed-point smoothing'', $\mathcal{O}(1)$ memory). Since fixed-point smoothing is a crucial component of algorithms for dynamical systems with unknown initial conditions, we close this gap by introducing a new formulation of a Gaussian fixed-point smoother. In contrast to prior approaches, our perspective admits a numerically robust Cholesky-based form (without downdates) and avoids state augmentation, which would needlessly inflate the state-space model and reduce the numerical practicality of any fixed-point smoother code. The experiments demonstrate how a JAX implementation of our algorithm matches the runtime of the fastest methods and the robustness of the most robust techniques while existing implementations must always sacrifice one for the other.
- Abstract(参考訳): ガウススムースティングアルゴリズムの実践的な実装は、過去60年間に多くの注目を集めてきた。
しかしながら、ほとんどすべての作業は、Ruch-Tung-Striebelスムーダの変種による完全時系列('fixed-interval smoothing', $\mathcal{O}(K)$ memory)を推定することに焦点を当てており、初期状態('fixed-point smoothing', $\mathcal{O}(1)$ memory)を推定することはほとんどない。
固定点平滑化は、未知の初期条件を持つ力学系におけるアルゴリズムの重要な構成要素であるため、ガウス的不動点平滑化の新しい定式化を導入することにより、このギャップを埋める。
従来のアプローチとは対照的に、我々の視点では、数値的に堅牢なColeskyベースの形式(ダウンタイムなしで)を認め、ステートスペースモデルを不必要に増加させ、固定点スムーズなコードの数値的実用性を低下させる状態拡張を回避する。
実験では、我々のアルゴリズムのJAX実装が、最も高速なメソッドのランタイムと、最も堅牢なテクニックの堅牢性にどのようにマッチするかを示します。
関連論文リスト
- Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
最適解における空間性を促進するために,テキスト規則化を用いた非テキスト・非滑らかな問題のクラスを提案する。
我々のアルゴリズムは、滑らかな凸問題に対する一階法に対するネステロフの最適収束と全く同じ$Ofrac(t2)$の特異収束を達成することができることを示す。
論文 参考訳(メタデータ) (2023-07-04T16:55:41Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
非強凸設定における最小二乗回帰問題の近似を考察する。
本稿では,問題のノイズに依存して最適な予測誤差率を実現するための,最初の実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T14:39:33Z) - Minibatch and Momentum Model-based Methods for Stochastic Non-smooth
Non-convex Optimization [3.4809730725241597]
モデルベース手法に対する2つの重要な拡張を行う。
まず,各イテレーションのモデル関数を近似するために,サンプルの集合を用いる新しいミニバッチを提案する。
第二に、運動量法の成功により、新しい凸モデルを提案する。
論文 参考訳(メタデータ) (2021-06-06T05:31:57Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
問題に対処するための新しいアルゴリズム - Momentum- Single-timescale Approximation (MSTSA) を提案する。
MSTSAでは、低いレベルのサブプロブレムに対する不正確な解決策のため、反復でエラーを制御することができます。
論文 参考訳(メタデータ) (2021-02-15T07:10:33Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
マルコフ連鎖からデータポイントが依存しサンプリングされる最小二乗線形回帰問題について検討する。
この問題を$tau_mathsfmix$という観点から、鋭い情報理論のミニマックス下限を確立する。
本稿では,経験的リプレイに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-16T04:26:50Z) - Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses [52.039438701530905]
任意のリプシッツ非平滑凸損失に対して,数種類の勾配勾配降下(SGD)に対して,鋭い上下境界を与える。
我々の限界は、極端に過剰な集団リスクを伴う、微分的にプライベートな非平滑凸最適化のための新しいアルゴリズムを導出することを可能にする。
論文 参考訳(メタデータ) (2020-06-12T02:45:21Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
データフィッティングと正規化のための大域的スムーズなロバスト推定器に基づくロバストな非剛性登録のための定式化を提案する。
本稿では,L-BFGS を用いた最小二乗問題の解法に,各繰り返しを減らし,最大化最小化アルゴリズムを適用した。
論文 参考訳(メタデータ) (2020-04-09T01:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。