Neural Click Models for Recommender Systems
- URL: http://arxiv.org/abs/2409.20055v1
- Date: Mon, 30 Sep 2024 08:00:04 GMT
- Title: Neural Click Models for Recommender Systems
- Authors: Mikhail Shirokikh, Ilya Shenbin, Anton Alekseev, Anna Volodkevich, Alexey Vasilev, Andrey V. Savchenko, Sergey Nikolenko,
- Abstract summary: We develop and evaluate neural architectures to model the user behavior in recommender systems (RS) inspired by click models for Web search.
Our models outperform baselines on the ContentWise and RL4RS datasets and can be used in RS simulators to model user response for RS evaluation and pretraining.
- Score: 13.358229360322486
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We develop and evaluate neural architectures to model the user behavior in recommender systems (RS) inspired by click models for Web search but going beyond standard click models. Proposed architectures include recurrent networks, Transformer-based models that alleviate the quadratic complexity of self-attention, adversarial and hierarchical architectures. Our models outperform baselines on the ContentWise and RL4RS datasets and can be used in RS simulators to model user response for RS evaluation and pretraining.
Related papers
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys) [57.30228361181045]
This survey connects key advancements in recommender systems using Generative Models (Gen-RecSys)
It covers: interaction-driven generative models; the use of large language models (LLM) and textual data for natural language recommendation; and the integration of multimodal models for generating and processing images/videos in RS.
Our work highlights necessary paradigms for evaluating the impact and harm of Gen-RecSys and identifies open challenges.
arXiv Detail & Related papers (2024-03-31T06:57:57Z) - Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment [69.33930972652594]
We propose a novel structural pruning approach to jointly learn the weights and structurally prune architectures of CNN models.
The core element of our method is a Reinforcement Learning (RL) agent whose actions determine the pruning ratios of the CNN model's layers.
We conduct the joint training and pruning by iteratively training the model's weights and the agent's policy.
arXiv Detail & Related papers (2024-03-28T15:22:29Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks [53.09649785009528]
In this paper, we explore a paradigm that does not require training to obtain new models.
Similar to the birth of CNN inspired by receptive fields in the biological visual system, we propose Model Disassembling and Assembling.
For model assembling, we present the alignment padding strategy and parameter scaling strategy to construct a new model tailored for a specific task.
arXiv Detail & Related papers (2022-03-25T05:27:28Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
We present a model based on Neural Architecture Search (NAS) and self-learning for received signal strength ( RSS) map reconstruction.
The approach first finds an optimal NN architecture and simultaneously train the deduced model over some ground-truth measurements of a given ( RSS) map.
Experimental results show that signal predictions of this second model outperforms non-learning based state-of-the-art techniques and NN models with no architecture search.
arXiv Detail & Related papers (2021-05-17T12:19:22Z) - Smaller World Models for Reinforcement Learning [0.5156484100374059]
We propose a new neural network architecture for world models based on a vector quantized-variational autoencoder (VQ-VAE)
A model-free PPO agent is trained purely on simulated experience from the world model.
We show that we reach comparable performance to their SimPLe algorithm, while our model is significantly smaller.
arXiv Detail & Related papers (2020-10-12T15:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.