OM4OV: Leveraging Ontology Matching for Ontology Versioning
- URL: http://arxiv.org/abs/2409.20302v1
- Date: Mon, 30 Sep 2024 14:00:04 GMT
- Title: OM4OV: Leveraging Ontology Matching for Ontology Versioning
- Authors: Zhangcheng Qiang, Kerry Taylor,
- Abstract summary: We introduce a unified OM4OV4 approach to performing version control tasks.
We experimentally validate the OM4OV pipeline and its cross-reference mechanism using three datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the dynamic nature of the semantic web, ontology version control is required to capture time-varying information, most importantly for widely-used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose yet another approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation, performance measurement, and dataset construction for OV tasks. Reusing the prior alignment(s) from OM, we also propose a cross-reference mechanism to effectively reduce the matching candidature and improve overall OV performance. We experimentally validate the OM4OV pipeline and its cross-reference mechanism using three datasets from the Alignment Evaluation Initiative (OAEI) and exploit insights on OM used for OV tasks.
Related papers
- OMLog: Online Log Anomaly Detection for Evolving System with Meta-learning [10.181157278476428]
OMLog is a real-time and reliable online log anomaly detection model.
We introduce a maximum mean discrepancy-based distribution shift detection method.
We also design an online learning mechanism based on meta-learning, which can effectively learn the highly repetitive patterns of log sequences.
arXiv Detail & Related papers (2024-10-22T01:50:07Z) - MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection [107.15164718585666]
We investigate the root cause of VLMs' biased prediction under the open vocabulary detection context.
Our observations lead to a simple yet effective paradigm, coded MarvelOVD, that generates significantly better training targets.
Our method outperforms the other state-of-the-arts by significant margins.
arXiv Detail & Related papers (2024-07-31T09:23:57Z) - Agent-OM: Leveraging LLM Agents for Ontology Matching [4.222245509121683]
This study introduces a novel agent-powered design paradigm for Ontology matching systems.
We propose a framework, namely Agent-OMw.r.t. Agent for Ontology Matching, consisting of two Siamese agents for matching and retrieval.
Our system can achieve results very close to the long-standing best performance on simple OM tasks.
arXiv Detail & Related papers (2023-12-01T03:44:54Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Towards Unified Token Learning for Vision-Language Tracking [65.96561538356315]
We present a vision-language (VL) tracking pipeline, termed textbfMMTrack, which casts VL tracking as a token generation task.
Our proposed framework serializes language description and bounding box into a sequence of discrete tokens.
In this new design paradigm, all token queries are required to perceive the desired target and directly predict spatial coordinates of the target.
arXiv Detail & Related papers (2023-08-27T13:17:34Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Truveta Mapper: A Zero-shot Ontology Alignment Framework [3.5284865194805106]
A new perspective is suggested for unsupervised Ontology Matching (OM) or Ontology Alignment (OA)
The proposed framework, Truveta Mapper (TM), leverages a multi-task sequence-to-sequence transformer model to perform alignment across multiple in a zero-shot, unified and end-to-end manner.
TM is pre-trained and fine-tuned only on publicly available corpus text and inner-ontologies data.
arXiv Detail & Related papers (2023-01-24T00:32:56Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Interpretable MTL from Heterogeneous Domains using Boosted Tree [8.095372074268685]
Multi-task learning (MTL) aims at improving the generalization performance of several related tasks.
In this paper, following the philosophy of boosted tree, we proposed a two-stage method.
Experiments on both benchmark and real-world datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2020-03-16T08:58:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.