VideoINSTA: Zero-shot Long Video Understanding via Informative Spatial-Temporal Reasoning with LLMs
- URL: http://arxiv.org/abs/2409.20365v2
- Date: Fri, 4 Oct 2024 21:57:23 GMT
- Title: VideoINSTA: Zero-shot Long Video Understanding via Informative Spatial-Temporal Reasoning with LLMs
- Authors: Ruotong Liao, Max Erler, Huiyu Wang, Guangyao Zhai, Gengyuan Zhang, Yunpu Ma, Volker Tresp,
- Abstract summary: Long video understanding presents unique challenges due to the complexity of reasoning over extended timespans.
We propose a framework VideoINSTA, i.e. INformative Spatial-TemporAl Reasoning for long-form video understanding.
Our model significantly improves the state-of-the-art on three long video question-answering benchmarks.
- Score: 27.473258727617477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the video-language domain, recent works in leveraging zero-shot Large Language Model-based reasoning for video understanding have become competitive challengers to previous end-to-end models. However, long video understanding presents unique challenges due to the complexity of reasoning over extended timespans, even for zero-shot LLM-based approaches. The challenge of information redundancy in long videos prompts the question of what specific information is essential for large language models (LLMs) and how to leverage them for complex spatial-temporal reasoning in long-form video analysis. We propose a framework VideoINSTA, i.e. INformative Spatial-TemporAl Reasoning for zero-shot long-form video understanding. VideoINSTA contributes (1) a zero-shot framework for long video understanding using LLMs; (2) an event-based temporal reasoning and content-based spatial reasoning approach for LLMs to reason over spatial-temporal information in videos; (3) a self-reflective information reasoning scheme balancing temporal factors based on information sufficiency and prediction confidence. Our model significantly improves the state-of-the-art on three long video question-answering benchmarks: EgoSchema, NextQA, and IntentQA, and the open question answering dataset ActivityNetQA. The code is released here: https://github.com/mayhugotong/VideoINSTA.
Related papers
- VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM [81.15525024145697]
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding.
However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details.
We introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding.
arXiv Detail & Related papers (2024-12-31T18:56:46Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (Video QA) is a challenging video understanding task that requires models to comprehend entire videos.
Recent advancements in Multimodal Large Language Models (MLLMs) have transformed video QA by leveraging their exceptional commonsense reasoning capabilities.
We propose T-Former, a novel temporal modeling method that creates a question-guided temporal bridge between frame-wise visual perception and the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-26T17:53:14Z) - Do Language Models Understand Time? [2.290956583394892]
Large language models (LLMs) have revolutionized video-based computer vision applications, including action recognition, anomaly detection, and summarization.
This work critically examines the role of LLMs in video processing, with a specific focus on their temporal reasoning capabilities.
We analyze challenges posed by existing video datasets, including biases, lack of temporal annotations, and domain-specific limitations that constrain the temporal understanding of LLMs.
arXiv Detail & Related papers (2024-12-18T13:38:06Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - TempCompass: Do Video LLMs Really Understand Videos? [36.28973015469766]
Existing benchmarks fail to provide a comprehensive feedback on the temporal perception ability of Video LLMs.
We propose the textbfTemp benchmark, which introduces a diversity of high-quality temporal aspects and task formats.
arXiv Detail & Related papers (2024-03-01T12:02:19Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z) - A Simple LLM Framework for Long-Range Video Question-Answering [63.50439701867275]
We present LLoVi, a language-based framework for long-range video question-answering (LVQA)
Our approach uses a frame/clip-level visual captioner coupled with a Large Language Model (GPT-3.5, GPT-4)
Our method achieves 50.3% accuracy, outperforming the previous best-performing approach by 18.1% (absolute gain)
arXiv Detail & Related papers (2023-12-28T18:58:01Z) - Retrieval-based Video Language Model for Efficient Long Video Question
Answering [39.474247695753725]
We introduce a retrieval-based video language model (R-VLM) for efficient and interpretable long video QA.
Specifically, given a question (query) and a long video, our model identifies and selects the most relevant $K$ video chunks.
Our experimental results validate the effectiveness of our framework for comprehending long videos.
arXiv Detail & Related papers (2023-12-08T09:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.