論文の概要: AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2409.20398v1
- Date: Mon, 30 Sep 2024 15:31:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 07:46:26.864842
- Title: AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
- Title(参考訳): AUCSeg: AUC指向のLong-tail Semantic Segmentation
- Authors: Boyu Han, Qianqian Xu, Zhiyong Yang, Shilong Bao, Peisong Wen, Yangbangyan Jiang, Qingming Huang,
- Abstract要約: 画素レベルのAUC損失関数を開発し,アルゴリズムの一般化能力に関する依存性グラフに基づく理論的解析を行う。
また、重要なメモリ需要を管理するために、Tail-Classes Memory Bankを設計する。
- 参考スコア(独自算出の注目度): 88.50256898176269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performance under long-tail distributions. In this paper, we explore AUC optimization methods in the context of pixel-level long-tail semantic segmentation, a much more complicated scenario. This task introduces two major challenges for AUC optimization techniques. On one hand, AUC optimization in a pixel-level task involves complex coupling across loss terms, with structured inner-image and pairwise inter-image dependencies, complicating theoretical analysis. On the other hand, we find that mini-batch estimation of AUC loss in this case requires a larger batch size, resulting in an unaffordable space complexity. To address these issues, we develop a pixel-level AUC loss function and conduct a dependency-graph-based theoretical analysis of the algorithm's generalization ability. Additionally, we design a Tail-Classes Memory Bank (T-Memory Bank) to manage the significant memory demand. Finally, comprehensive experiments across various benchmarks confirm the effectiveness of our proposed AUCSeg method. The code is available at https://github.com/boyuh/AUCSeg.
- Abstract(参考訳): The Area Under the ROC Curve (AUC)は、インスタンスレベルのロングテール学習問題を評価するためのよく知られた指標である。
過去20年間に,長期分布下でのモデル性能向上のために,多くのAUC最適化手法が提案されてきた。
本稿では,より複雑なシナリオである画素レベルの長テールセマンティックセマンティックセマンティックセグメンテーションの文脈におけるAUC最適化手法について検討する。
この課題は、AUC最適化技術における2つの大きな課題を提起する。
一方、画素レベルのタスクにおけるAUC最適化は、構造的内像と対角的相互像の依存関係を持つ損失項間の複雑な結合を伴い、理論的解析を複雑化する。
一方,この場合のAUC損失の最小バッチ推定にはバッチサイズが大きすぎるため,スペースの複雑さが生じることが判明した。
これらの問題に対処するため,画素レベルのAUC損失関数を開発し,アルゴリズムの一般化能力に関する依存性グラフに基づく理論的解析を行う。
さらに,Tail-Classes Memory Bank (T-Memory Bank) を設計し,重要なメモリ需要を管理する。
最後に,AUCSeg法の有効性を様々なベンチマークで検証した。
コードはhttps://github.com/boyuh/AUCSegで入手できる。
関連論文リスト
- Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons [0.0]
本研究は,主成分分析(PCA)アルゴリズムを2種類の高性能デバイスに実装するものである。
得られた結果は,PCA アルゴリズムのフィールドプログラマブルゲートアレイ (FPGA) による実装と比較された。
論文 参考訳(メタデータ) (2024-03-27T07:50:45Z) - DRAUC: An Instance-wise Distributionally Robust AUC Optimization
Framework [133.26230331320963]
ROC曲線のエリア(AUC)は、長い尾の分類のシナリオにおいて広く用いられている指標である。
本研究では,分散ロバストAUC(DRAUC)のインスタンスワイドサロゲート損失を提案し,その上に最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-11-06T12:15:57Z) - Supervised Contrastive Learning as Multi-Objective Optimization for
Fine-Tuning Large Pre-trained Language Models [3.759936323189417]
教師付きコントラスト学習(SCL)は,ほとんどの分類タスクにおいて優れた性能を発揮することが示されている。
本研究では,RoBERTa言語モデルの微調整フェーズにおける多目的最適化問題としてSCL問題を定式化する。
論文 参考訳(メタデータ) (2022-09-28T15:13:58Z) - AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail
Problems [102.95119281306893]
我々は、AUCを最適化するための敵の訓練方法を探求するための早期トライアルを提示する。
我々は、AUC最適化問題をサドル点問題として再構成し、目的がインスタンスワイズ関数となる。
我々の分析は, min-max問題の勾配を計算して, 逆例を生成するアルゴリズムが求められているため, 既存の研究と異なる。
論文 参考訳(メタデータ) (2022-06-24T09:13:39Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - Evolutionary Multitasking AUC Optimization [10.279426529746667]
本稿では,構築した安価で高価なタスクの情報をフル活用して高い性能を得るための進化的EMT(termed EMT)を開発する。
提案手法の性能をバイナリ分類データセットで評価する。
論文 参考訳(メタデータ) (2022-01-04T14:14:13Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio
Estimation and Quantization [25.484585922608193]
EQ-Netは,データ駆動手法を用いてログ類似度(LLR)推定と量子化の両課題を解決する,最初の包括的フレームワークである。
広範な実験評価を行い,両タスクにおいて単一アーキテクチャが最先端の成果を達成できることを実証する。
論文 参考訳(メタデータ) (2020-12-23T18:11:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。