Single-atom dissipation and dephasing in Dicke and Tavis-Cummings quantum batteries
- URL: http://arxiv.org/abs/2409.20475v1
- Date: Mon, 30 Sep 2024 16:35:55 GMT
- Title: Single-atom dissipation and dephasing in Dicke and Tavis-Cummings quantum batteries
- Authors: Andrea Canzio, Vasco Cavina, Marco Polini, Vittorio Giovannetti,
- Abstract summary: We study the influence of single-atom dissipation and dephasing noise on the performance of Dicke and Tavis-Cummings quantum batteries.
- Score: 0.4999814847776097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the influence of single-atom dissipation and dephasing noise on the performance of Dicke and Tavis-Cummings quantum batteries, where the electromagnetic field of the cavity hosting the system acts as a charger. For these models a genuine charging process can only occur in the transient regime. Indeed, unless the interaction with the environment is cut off, the asymptotic energy of the battery is solely determined by the environment and does not depend on the initial energy of the electromagnetic field. We numerically estimate the fundamental figures of merit for the model, including the time at which the battery reaches its maximum ergotropy, the average energy, and the energy that needs to be used to switch the battery-charger interaction on and off. Depending on the scaling of the coupling between the battery and the charger, we show that the model can still exhibit a subextensive charging time. However, for the Dicke battery, this effect comes with a higher cost when switching the battery-charger interaction on and off. We also show that as the number of battery constituents increases, both the Dicke and Tavis-Cummings models become asymptotically free, meaning the amount of energy that is not unitarily extractable becomes negligible. We obtain this result numerically and demonstrate analytically that it is a consequence of the symmetry under permutation of the model. Finally, we perform simulations for different values of the detuning, showing that the optimal regime for the Dicke battery is off-resonance, in contrast to what is observed in the Tavis-Cummings case.
Related papers
- Lossy Micromaser Battery: Almost Pure States in the Jaynes-Cummings
Regime [0.0]
We consider a micromaser model of a quantum battery, where the battery is a single mode of the electromagnetic field in a cavity, charged via repeated interactions with a stream of qubits.
We show that the coherent protocol is superior to the incoherent one, in that an effective pure steady state is achieved for generic values of the model parameters.
arXiv Detail & Related papers (2022-12-27T09:04:16Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Quantum battery in nonequilibrium reservoirs [3.013260458524006]
We investigate a quantum battery system in which the coupled two-level charger and battery are immersed in nonequilbrium boson or fermion reservoirs.
In the non-resonance driving regime, the efficiency of the quantum battery can be optimized by the compensation mechanism for both the boson and fermion reservoirs.
arXiv Detail & Related papers (2022-10-17T06:36:02Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Collective effects and quantum coherence in dissipative charging of
quantum batteries [0.0]
We show that for low temperatures the collective process can attain a charging power that increases polynomically with the number of batteries.
We also study the dissipative charging process of single battery using a time dependent Hamiltonian that generates coherences in the energy basis.
arXiv Detail & Related papers (2022-05-13T21:17:32Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Quantum battery with non-Hermitian charging [0.0]
We propose a design of a quantum battery exploiting the non-Hermitian Hamiltonian as a charger.
In particular, starting with the ground or the thermal state of the interacting (non-interacting) Hamiltonian as the battery, the charging of the battery is performed via parity-time (PT)- and rotational-time (RT)-symmetric Hamiltonian.
arXiv Detail & Related papers (2022-03-17T17:49:24Z) - Quantum batteries at the verge of a phase transition [0.0]
We study a cyclic battery-charger quantum device that is in thermal equilibrium, or in a ground state, during the charge storing stage.
The main figures of merit - the extracted energy and the thermodynamic efficiency - can be enhanced by operating the cycle close to the quantum phase transition point.
arXiv Detail & Related papers (2021-10-20T14:49:36Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.