論文の概要: Online Decision Deferral under Budget Constraints
- arxiv url: http://arxiv.org/abs/2409.20489v1
- Date: Mon, 30 Sep 2024 16:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 05:36:48.598289
- Title: Online Decision Deferral under Budget Constraints
- Title(参考訳): 予算制約下におけるオンライン意思決定デフレ
- Authors: Mirabel Reid, Tom Sühr, Claire Vernade, Samira Samadi,
- Abstract要約: 本稿では,オンライン意思決定問題の文脈的包帯モデルを提案する。
当社のフレームワークには予算制約と,さまざまな部分的フィードバックモデルが含まれています。
実世界のデータセット上での顕著なパフォーマンスを実現するための効率的な拡張を提案する。
- 参考スコア(独自算出の注目度): 6.446189857311325
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine Learning (ML) models are increasingly used to support or substitute decision making. In applications where skilled experts are a limited resource, it is crucial to reduce their burden and automate decisions when the performance of an ML model is at least of equal quality. However, models are often pre-trained and fixed, while tasks arrive sequentially and their distribution may shift. In that case, the respective performance of the decision makers may change, and the deferral algorithm must remain adaptive. We propose a contextual bandit model of this online decision making problem. Our framework includes budget constraints and different types of partial feedback models. Beyond the theoretical guarantees of our algorithm, we propose efficient extensions that achieve remarkable performance on real-world datasets.
- Abstract(参考訳): 機械学習(ML)モデルは、意思決定のサポートや代替にますます使われています。
熟練した専門家が限られたリソースであるアプリケーションでは、MLモデルの性能が少なくとも同等の品質である場合、その負担を減らし、意思決定を自動化することが不可欠である。
しかしながら、モデルはしばしば事前訓練され、固定され、タスクが順次到着し、その分布がシフトする可能性がある。
この場合、意思決定者のそれぞれのパフォーマンスは変化し、遅延アルゴリズムは適応的でなければならない。
本稿では,このオンライン意思決定問題の文脈的包括的モデルを提案する。
当社のフレームワークには予算制約と,さまざまな部分的フィードバックモデルが含まれています。
提案アルゴリズムは,提案アルゴリズムの理論的保証の他に,実世界のデータセット上での顕著な性能を実現する効率的な拡張を提案する。
関連論文リスト
- Towards Cost Sensitive Decision Making [14.279123976398926]
本研究では,環境から機能を積極的に獲得し,意思決定の質と確実性を向上するRLモデルを考察する。
本稿では,Active-Acquisition POMDPを提案する。
積極的に獲得された部分観測環境においてエージェントを支援するとともに,探索・探索ジレンマを軽減するため,モデルベースアプローチを開発した。
論文 参考訳(メタデータ) (2024-10-04T19:48:23Z) - Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization [6.713974813995327]
本稿では、メモリを活用してニューラルネットワークの適応性を向上させるアプローチであるMementOを提案する。
我々は,大規模インスタンス上で全RL自動回帰解法をトレーニングし,MementOが拡張可能で,データ効率がよいことを示す。
全体として、MementOは評価された12のタスクのうち11に最先端のタスクをプッシュすることができる。
論文 参考訳(メタデータ) (2024-06-24T08:18:19Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
エージェントの計算制約を明示的にモデル化する潜在推論予算モデル(L-IBM)を導入する。
L-IBMは、最適なアクターの多様な集団のデータを使ってエージェントモデルを学ぶことができる。
我々は,L-IBMが不確実性の下での意思決定のボルツマンモデルに適合しているか,あるいは上回っていることを示す。
論文 参考訳(メタデータ) (2023-12-07T03:55:51Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
本手法は,文献から得られた4つの領域において,最先端の成果が得られることを示す。
提案手法は, 局所性仮定が破られた場合, 既存手法よりも200%近く性能が向上する。
論文 参考訳(メタデータ) (2023-05-26T11:17:45Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
制約付きオンライン学習問題に対する既存の原始双対アルゴリズムは、2つの基本的な仮定に依存している。
このような仮定は、標準の原始双対テンプレートを弱適応的後悔最小化器で与えることによって、どのように回避できるのかを示す。
上記の2つの前提が満たされていない場合に保証される、世界の最高の保証を証明します。
論文 参考訳(メタデータ) (2023-02-02T16:30:33Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Learning-Assisted Algorithm Unrolling for Online Optimization with
Budget Constraints [27.84415856657607]
我々はLAAU(Learning-Assisted Algorithm Unrolling)と呼ばれる新しい機械学習支援アンローリング手法を提案する。
バックプロパゲーションによる効率的なトレーニングには、時間とともに決定パイプラインの勾配を導出します。
また、トレーニングデータがオフラインで利用可能で、オンラインで収集できる場合の2つのケースの平均的なコスト境界も提供します。
論文 参考訳(メタデータ) (2022-12-03T20:56:29Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。