A Theory of Inference Compute Scaling: Reasoning through Directed Stochastic Skill Search
- URL: http://arxiv.org/abs/2507.00004v2
- Date: Thu, 10 Jul 2025 17:08:40 GMT
- Title: A Theory of Inference Compute Scaling: Reasoning through Directed Stochastic Skill Search
- Authors: Austin R. Ellis-Mohr, Anuj K. Nayak, Lav R. Varshney,
- Abstract summary: Large language models (LLMs) demand considerable computational, energy, and financial resources during both training and deployment.<n>Inference costs now represent a significant and growing component of the overall resource burden.<n>We introduce directed skill search (DS3), a general framework that represents inference as expressive over a learned skill graph.
- Score: 15.387256204743407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) demand considerable computational, energy, and financial resources during both training and deployment. While scaling laws for training have guided much of the field's recent progress, inference costs now represent a significant and growing component of the overall resource burden, particularly for reasoning-focused models. Existing characterizations of compute-optimality that consider model size, dataset size, and inference tokens in isolation or in fixed combinations risk overlooking more efficient operating points. We introduce directed stochastic skill search (DS3), a general framework that represents inference as stochastic traversal over a learned skill graph. From a simplified yet expressive instantiation, we derive closed-form expressions for task success and compute cost across a wide range of inference strategies -- including chain-of-thought (CoT) and tree-of-thought (ToT) -- enabling comparative analysis as a function of task difficulty and model capability. To that end, we extend a prior first-principles tripartite graph framework of LLM training to incorporate inference, and separately bridge DS3 with empirical methods that characterize LLM scaling behavior. We theoretically recover empirically observed patterns, including: linear accuracy scaling with logarithmic compute; variation in preferred inference strategies as a function of task difficulty and model capability; emergent behavior elicited by reasoning even when performance plateaus under parameter scaling; and both best-of-N (BoN) and majority voting behavior captured within a unified analytical framework. By explicitly characterizing training-inference interdependencies, our framework deepens theoretical understanding and supports principled algorithmic design and resource allocation.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Probabilistic Optimality for Inference-time Scaling [11.92228840747636]
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs)<n>We propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.)<n>Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling.
arXiv Detail & Related papers (2025-06-27T16:44:11Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Scaling over Scaling: Exploring Test-Time Scaling Plateau in Large Reasoning Models [7.2703757624760526]
Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling.<n>As we push these scaling boundaries, understanding the practical limits and achieving optimal resource allocation becomes a critical challenge.<n>In this paper, we investigate the scaling plateau of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM)
arXiv Detail & Related papers (2025-05-26T20:58:45Z) - From Mathematical Reasoning to Code: Generalization of Process Reward Models in Test-Time Scaling [32.72867198629561]
We investigate the interplay between pre-training and reward model training FLOPs to assess their influence on PRM efficiency and accuracy.<n>Our findings indicate that PRMs trained on mathematical datasets exhibit performance comparable to those tailored for code generation.
arXiv Detail & Related papers (2025-05-24T12:44:15Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling on a continuous domain for the data prediction task of (multimodal) self-supervised representation learning.<n>We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.<n>We propose a novel non-parametric method for approximating the sum of conditional probability densities required by MIS.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Annealing Optimization for Progressive Learning with Stochastic
Approximation [0.0]
We introduce a learning model designed to meet the needs of applications in which computational resources are limited.
We develop an online prototype-based learning algorithm that is formulated as an online-free gradient approximation algorithm.
The learning model can be viewed as an interpretable and progressively growing competitive neural network model to be used for supervised, unsupervised, and reinforcement learning.
arXiv Detail & Related papers (2022-09-06T21:31:01Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
junction tree algorithm is the most general solution for exact MAP inference with run-time guarantees.
We propose a new graph transformation technique via node cloning which ensures a run-time for solving our target problem independently of the form of a corresponding clique tree.
arXiv Detail & Related papers (2019-12-27T13:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.