Interactive Speculative Planning: Enhance Agent Efficiency through Co-design of System and User Interface
- URL: http://arxiv.org/abs/2410.00079v1
- Date: Mon, 30 Sep 2024 16:52:51 GMT
- Title: Interactive Speculative Planning: Enhance Agent Efficiency through Co-design of System and User Interface
- Authors: Wenyue Hua, Mengting Wan, Shashank Vadrevu, Ryan Nadel, Yongfeng Zhang, Chi Wang,
- Abstract summary: This paper presents a human-centered efficient agent planning method -- Interactive Speculative Planning.
We aim at enhancing the efficiency of agent planning through both system design and human-AI interaction.
- Score: 38.76937539085164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agents, as user-centric tools, are increasingly deployed for human task delegation, assisting with a broad spectrum of requests by generating thoughts, engaging with user proxies, and producing action plans. However, agents based on large language models (LLMs) often face substantial planning latency due to two primary factors: the efficiency limitations of the underlying LLMs due to their large size and high demand, and the structural complexity of the agents due to the extensive generation of intermediate thoughts to produce the final output. Given that inefficiency in service provision can undermine the value of automation for users, this paper presents a human-centered efficient agent planning method -- Interactive Speculative Planning -- aiming at enhancing the efficiency of agent planning through both system design and human-AI interaction. Our approach advocates for the co-design of the agent system and user interface, underscoring the importance of an agent system that can fluidly manage user interactions and interruptions. By integrating human interruptions as a fundamental component of the system, we not only make it more user-centric but also expedite the entire process by leveraging human-in-the-loop interactions to provide accurate intermediate steps. Code and data will be released.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process.
We integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - MobileAgent: enhancing mobile control via human-machine interaction and
SOP integration [0.0]
Large Language Models (LLMs) are now capable of automating mobile device operations for users.
Privacy concerns related to personalized user data arise during mobile operations, requiring user confirmation.
We have designed interactive tasks between agents and humans to identify sensitive information and align with personalized user needs.
Our approach is evaluated on the new device control benchmark AitW, which encompasses 30K unique instructions across multi-step tasks.
arXiv Detail & Related papers (2024-01-04T03:44:42Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - Designing Interaction for Multi-agent Cooperative System in an Office
Environment [2.2430284460908605]
Future intelligent system will involve very various types of artificial agents, such as mobile robots, smart home infrastructure or personal devices.
This paper presents the design and implementation of the human-machine interface of Intelligent Cyber-Physical system (ICPS)
ICPS is a multi-entity coordination system of robots and other smart devices in a working environment.
arXiv Detail & Related papers (2020-02-15T17:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.