Communication Learning in Multi-Agent Systems from Graph Modeling Perspective
- URL: http://arxiv.org/abs/2411.00382v1
- Date: Fri, 01 Nov 2024 05:56:51 GMT
- Title: Communication Learning in Multi-Agent Systems from Graph Modeling Perspective
- Authors: Shengchao Hu, Li Shen, Ya Zhang, Dacheng Tao,
- Abstract summary: We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
- Score: 62.13508281188895
- License:
- Abstract: In numerous artificial intelligence applications, the collaborative efforts of multiple intelligent agents are imperative for the successful attainment of target objectives. To enhance coordination among these agents, a distributed communication framework is often employed. However, indiscriminate information sharing among all agents can be resource-intensive, and the adoption of manually pre-defined communication architectures imposes constraints on inter-agent communication, thus limiting the potential for effective collaboration. Moreover, the communication framework often remains static during inference, which may result in sustained high resource consumption, as in most cases, only key decisions necessitate information sharing among agents. In this study, we introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph. We formulate this problem as the task of determining the communication graph while enabling the architecture parameters to update normally, thus necessitating a bi-level optimization process. Utilizing continuous relaxation of the graph representation and incorporating attention units, our proposed approach, CommFormer, efficiently optimizes the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner. Additionally, we introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time, based on current observations, thus improving decision-making efficiency. Extensive experiments on a variety of cooperative tasks substantiate the robustness of our model across diverse cooperative scenarios, where agents are able to develop more coordinated and sophisticated strategies regardless of changes in the number of agents.
Related papers
- Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Multi-agent Communication with Graph Information Bottleneck under
Limited Bandwidth (a position paper) [92.11330289225981]
In many real-world scenarios, communication can be expensive and the bandwidth of the multi-agent system is subject to certain constraints.
Redundant messages who occupy the communication resources can block the transmission of informative messages and thus jeopardize the performance.
We propose a novel multi-agent communication module, CommGIB, which effectively compresses the structure information and node information in the communication graph to deal with bandwidth-constrained settings.
arXiv Detail & Related papers (2021-12-20T07:53:44Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - The Emergence of Adversarial Communication in Multi-Agent Reinforcement
Learning [6.18778092044887]
Many real-world problems require the coordination of multiple autonomous agents.
Recent work has shown the promise of Graph Neural Networks (GNNs) to learn explicit communication strategies that enable complex multi-agent coordination.
We show how a single self-interested agent is capable of learning highly manipulative communication strategies that allows it to significantly outperform a cooperative team of agents.
arXiv Detail & Related papers (2020-08-06T12:48:08Z) - Counterfactual Multi-Agent Reinforcement Learning with Graph Convolution
Communication [5.5438676149999075]
We consider a fully cooperative multi-agent system where agents cooperate to maximize a system's utility.
We propose that multi-agent systems must have the ability to communicate and understand the inter-plays between agents.
We develop an architecture that allows for communication among agents and tailors the system's reward for each individual agent.
arXiv Detail & Related papers (2020-04-01T14:36:13Z) - A Visual Communication Map for Multi-Agent Deep Reinforcement Learning [7.003240657279981]
Multi-agent learning poses significant challenges in the effort to allocate a concealed communication medium.
Recent studies typically combine a specialized neural network with reinforcement learning to enable communication between agents.
This paper proposes a more scalable approach that not only deals with a great number of agents but also enables collaboration between dissimilar functional agents.
arXiv Detail & Related papers (2020-02-27T02:38:21Z) - Learning Multi-Agent Coordination through Connectivity-driven
Communication [7.462336024223669]
In artificial multi-agent systems, the ability to learn collaborative policies is predicated upon the agents' communication skills.
We present a deep reinforcement learning approach, Connectivity Driven Communication (CDC)
CDC is able to learn effective collaborative policies and can over-perform competing learning algorithms on cooperative navigation tasks.
arXiv Detail & Related papers (2020-02-12T20:58:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.