Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models
- URL: http://arxiv.org/abs/2410.00131v2
- Date: Fri, 18 Oct 2024 05:22:02 GMT
- Title: Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models
- Authors: Ji Liu, Jiaxiang Ren, Ruoming Jin, Zijie Zhang, Yang Zhou, Patrick Valduriez, Dejing Dou,
- Abstract summary: We propose a Fisher Information-based Efficient Curriculum Federated Learning framework (FibecFed) with two novel methods.
First, we propose a fisher information-based method to adaptively sample data within each device to improve the effectiveness of the FL fine-tuning process.
Second, we dynamically select the proper layers for global aggregation and sparse parameters for local update with LoRA.
- Score: 43.26028399395612
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As a promising paradigm to collaboratively train models with decentralized data, Federated Learning (FL) can be exploited to fine-tune Large Language Models (LLMs). While LLMs correspond to huge size, the scale of the training data significantly increases, which leads to tremendous amounts of computation and communication costs. The training data is generally non-Independent and Identically Distributed (non-IID), which requires adaptive data processing within each device. Although Low Rank Adaptation (LoRA) can significantly reduce the scale of parameters to update in the fine-tuning process, it still takes unaffordable time to transfer the low-rank parameters of all the layers in LLMs. In this paper, we propose a Fisher Information-based Efficient Curriculum Federated Learning framework (FibecFed) with two novel methods, i.e., adaptive federated curriculum learning and efficient sparse parameter update. First, we propose a fisher information-based method to adaptively sample data within each device to improve the effectiveness of the FL fine-tuning process. Second, we dynamically select the proper layers for global aggregation and sparse parameters for local update with LoRA so as to improve the efficiency of the FL fine-tuning process. Extensive experimental results based on 10 datasets demonstrate that FibecFed yields excellent performance (up to 45.35% in terms of accuracy) and superb fine-tuning speed (up to 98.61% faster) compared with 17 baseline approaches).
Related papers
- Enhancing Federated Learning Convergence with Dynamic Data Queue and Data Entropy-driven Participant Selection [13.825031686864559]
Federated Learning (FL) is a decentralized approach for collaborative model training on edge devices.
We present a method to improve convergence in FL by creating a global subset of data on the server and dynamically distributing it across devices.
Our approach results in a substantial accuracy boost of approximately 5% for the MNIST dataset, around 18% for CIFAR-10, and 20% for CIFAR-100 with a 10% global subset of data, outperforming the state-of-the-art (SOTA) aggregation algorithms.
arXiv Detail & Related papers (2024-10-23T11:47:04Z) - Efficient Federated Learning Using Dynamic Update and Adaptive Pruning with Momentum on Shared Server Data [59.6985168241067]
Federated Learning (FL) encounters two important problems, i.e., low training efficiency and limited computational resources.
We propose a new FL framework, FedDUMAP, to leverage the shared insensitive data on the server and the distributed data in edge devices.
Our proposed FL model, FedDUMAP, combines the three original techniques and has a significantly better performance compared with baseline approaches.
arXiv Detail & Related papers (2024-08-11T02:59:11Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z) - FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and
Federated Image Classification [47.24770508263431]
We develop FiLM Transfer (FiT) which fulfills requirements in the image classification setting.
FiT uses an automatically configured Naive Bayes classifier on top of a fixed backbone that has been pretrained on large image datasets.
We show that FiT achieves better classification accuracy than the state-of-the-art Big Transfer (BiT) algorithm at low-shot and on the challenging VTAB-1k benchmark.
arXiv Detail & Related papers (2022-06-17T10:17:20Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
Federated Learning (FL) suffers from two critical challenges, i.e., limited computational resources and low training efficiency.
We propose a novel FL framework, FedDUAP, to exploit the insensitive data on the server and the decentralized data in edge devices.
By integrating the two original techniques together, our proposed FL model, FedDUAP, significantly outperforms baseline approaches in terms of accuracy (up to 4.8% higher), efficiency (up to 2.8 times faster), and computational cost (up to 61.9% smaller)
arXiv Detail & Related papers (2022-04-25T10:00:00Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.