Aggregating Low Rank Adapters in Federated Fine-tuning
- URL: http://arxiv.org/abs/2501.06332v1
- Date: Fri, 10 Jan 2025 20:24:33 GMT
- Title: Aggregating Low Rank Adapters in Federated Fine-tuning
- Authors: Evelyn Trautmann, Ian Hales, Martin F. Volk,
- Abstract summary: Fine-tuning large language models requires high computational and memory resources, and is therefore associated with significant costs.<n>We propose a novel aggregation method and compare it with different existing aggregation methods of low rank adapters trained in a federated fine-tuning of large machine learning models.<n>We evaluate their performance with respect to selected GLUE benchmark datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fine-tuning large language models requires high computational and memory resources, and is therefore associated with significant costs. When training on federated datasets, an increased communication effort is also needed. For this reason, parameter-efficient methods (PEFT) are becoming increasingly important. In this context, very good results have already been achieved by fine-tuning with low-rank adaptation methods (LoRA). The application of LoRA methods in Federated Learning, and especially the aggregation of adaptation matrices, is a current research field. In this article, we propose a novel aggregation method and compare it with different existing aggregation methods of low rank adapters trained in a federated fine-tuning of large machine learning models and evaluate their performance with respect to selected GLUE benchmark datasets.
Related papers
- Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.
Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.
We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation [47.82423317739088]
This paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation.
Experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions.
arXiv Detail & Related papers (2025-03-31T09:18:42Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.
Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.
We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.
Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.
We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - Rethinking Data: Towards Better Performing Domain-Specific Small Language Models [0.0]
This paper presents our approach to finetuning a small Language Models (LM)
We achieve this by improving data quality at each stage of the LM training pipeline.
We improve the model generalization ability by merging the models fine-tuned with different parameters on different data subsets.
arXiv Detail & Related papers (2025-03-03T12:19:12Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Retrieval Instead of Fine-tuning: A Retrieval-based Parameter Ensemble for Zero-shot Learning [22.748835458594744]
We introduce Retrieval-based.
Ensemble (RPE), a new method that creates a vectorized database of.
Low-Rank Adaptations (LoRAs)
RPE minimizes the need for extensive training and eliminates the requirement for labeled data, making it particularly effective for zero-shot learning.
RPE is well-suited for privacy-sensitive domains like healthcare, as it modifies model parameters without accessing raw data.
arXiv Detail & Related papers (2024-10-13T16:28:38Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models [43.26028399395612]
We propose a Fisher Information-based Efficient Curriculum Federated Learning framework (FibecFed) with two novel methods.
First, we propose a fisher information-based method to adaptively sample data within each device to improve the effectiveness of the FL fine-tuning process.
Second, we dynamically select the proper layers for global aggregation and sparse parameters for local update with LoRA.
arXiv Detail & Related papers (2024-09-30T18:12:18Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis [0.7751705157998379]
The scarcity of well-annotated medical datasets requires leveraging transfer learning from broader datasets like ImageNet or pre-trained models like CLIP.
Model soups averages multiple fine-tuned models aiming to improve performance on In-Domain (ID) tasks and enhance robustness against Out-of-Distribution (OOD) datasets.
We propose a hierarchical merging approach that involves local and global aggregation of models at various levels.
arXiv Detail & Related papers (2024-03-20T06:48:48Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
We introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations.
Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases.
arXiv Detail & Related papers (2024-02-09T11:23:14Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation [77.62366712130196]
We present the winning entry at the fast domain adaptation task of DSTC8, a hybrid generative-retrieval model based on GPT-2 fine-tuned to the multi-domain MetaLWOz dataset.
Our model uses retrieval logic as a fallback, being SoTA on MetaLWOz in human evaluation (>4% improvement over the 2nd place system) and attaining competitive generalization performance in adaptation to the unseen MultiWOZ dataset.
arXiv Detail & Related papers (2020-03-03T18:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.