論文の概要: Are Large Language Models In-Context Personalized Summarizers? Get an iCOPERNICUS Test Done!
- arxiv url: http://arxiv.org/abs/2410.00149v1
- Date: Mon, 30 Sep 2024 18:45:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 14:40:28.514429
- Title: Are Large Language Models In-Context Personalized Summarizers? Get an iCOPERNICUS Test Done!
- Title(参考訳): 大規模言語モデルはコンテキスト内パーソナライズされた要約器か? iCOPERNICUS Test Done!
- Authors: Divya Patel, Pathik Patel, Ankush Chander, Sourish Dasgupta, Tanmoy Chakraborty,
- Abstract要約: 大規模言語モデル(LLM)は、ICL(In-Context-Learning)に基づく要約においてかなり成功した。
本稿では, EGISES を比較尺度として用いた, LLM における要約能力の新規なIn-COntext personalization learNIng sCrUtinyを提案する。
報告したICLの性能に基づいて17の最先端LCMを評価し,よりリッチなプロンプトで探索すると15モデルのICPLが劣化することを示した。
- 参考スコア(独自算出の注目度): 14.231110627461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have succeeded considerably in In-Context-Learning (ICL) based summarization. However, saliency is subject to the users' specific preference histories. Hence, we need reliable In-Context Personalization Learning (ICPL) capabilities within such LLMs. For any arbitrary LLM to exhibit ICPL, it needs to have the ability to discern contrast in user profiles. A recent study proposed a measure for degree-of-personalization called EGISES for the first time. EGISES measures a model's responsiveness to user profile differences. However, it cannot test if a model utilizes all three types of cues provided in ICPL prompts: (i) example summaries, (ii) user's reading histories, and (iii) contrast in user profiles. To address this, we propose the iCOPERNICUS framework, a novel In-COntext PERsonalization learNIng sCrUtiny of Summarization capability in LLMs that uses EGISES as a comparative measure. As a case-study, we evaluate 17 state-of-the-art LLMs based on their reported ICL performances and observe that 15 models' ICPL degrades (min: 1.6%; max: 3.6%) when probed with richer prompts, thereby showing lack of true ICPL.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ICL(In-Context-Learning)に基づく要約においてかなり成功した。
しかし、唾液度はユーザーの特定の嗜好履歴に左右される。
したがって、そのようなLLM内に信頼性の高いコンテキストパーソナライズ学習(ICPL)機能が必要である。
任意のLCMがICPLを示すためには、ユーザプロファイルのコントラストを識別する能力が必要である。
最近の研究では、EGISESと呼ばれる個人化の度合いが初めて提案されている。
EGISESは、ユーザープロファイルの違いに対するモデルの応答性を測定する。
しかし、モデルがICPLプロンプトで提供される3種類のキューをすべて利用するかどうかをテストすることはできない。
(i)例 要約
(二 利用者の閲覧履歴、及び
(iii)ユーザープロフィールでは対照的である。
そこで我々は, EGISES を比較尺度として用いた LLM における要約能力の新たな ICOPERNICUS フレームワークを提案する。
ケーススタディとして、報告されたICL性能に基づいて17の最先端LCMを評価し、よりリッチなプロンプトで探索すると15モデルのICPLが劣化し(分:1.6%、最大:3.6%)、真のICPLが欠如していることを示す。
関連論文リスト
- ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods [56.073335779595475]
ReCaLL (Relative Conditional Log-Likelihood) という新しいメンバーシップ推論攻撃(MIA)を提案する。
ReCaLLは、ターゲットデータポイントを非メンバーコンテキストでプレフィックスする場合、条件付きログライクな状態の相対的変化を調べる。
我々は総合的な実験を行い、ReCaLLがWikiMIAデータセット上で最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-06-23T00:23:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - DAIL: Data Augmentation for In-Context Learning via Self-Paraphrase [37.68804898063595]
In-Context Learning (ICL)と事前訓練された大規模言語モデルを組み合わせることで、様々なNLPタスクにおいて有望な結果が得られた。
textbfData textbfAugmentation for textbfIn-Context textbfLearning (textbfDAIL)を提案する。
論文 参考訳(メタデータ) (2023-11-06T18:12:55Z) - Hint-enhanced In-Context Learning wakes Large Language Models up for knowledge-intensive tasks [54.153914606302486]
大規模言語モデル(LLM)の規模拡大に伴い、インコンテキスト学習(ICL)能力が出現した。
我々は、オープンドメイン質問応答におけるICLのパワーを探るため、Hint-enhanced In-Context Learning(HICL)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-03T14:39:20Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - BYOC: Personalized Few-Shot Classification with Co-Authored Class
Descriptions [2.076173115539025]
LLMを用いた少数ショットテキスト分類のための新しい手法を提案する。
わずかな例ではなく、LLMは各クラスの健全な特徴を記述して誘導される。
例、質問、回答は、分類プロンプトを形成するために要約される。
論文 参考訳(メタデータ) (2023-10-09T19:37:38Z) - Knowledgeable In-Context Tuning: Exploring and Exploiting Factual Knowledge for In-Context Learning [37.22349652230841]
大規模言語モデル(LLM)は、テキストベースのプロンプトとしてラベル付きトレーニング例を条件にすることで、コンテキスト内学習(ICL)を可能にする。
本稿では、3つの中核面におけるICLの性能に事実知識が不可欠であることを実証する。
In-Context Tuning (KICT) フレームワークを導入し,ICLの性能向上を図る。
論文 参考訳(メタデータ) (2023-09-26T09:06:39Z) - L-Eval: Instituting Standardized Evaluation for Long Context Language
Models [91.05820785008527]
長い文脈言語モデル(LCLM)のより標準化された評価を行うためにL-Evalを提案する。
20のサブタスク、508の長いドキュメント、2000以上の人間ラベルのクエリ応答対を含む新しい評価スイートを構築した。
その結果、一般的なn-gramマッチングの指標は人間の判断とよく相関しないことがわかった。
論文 参考訳(メタデータ) (2023-07-20T17:59:41Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。