論文の概要: Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation
- arxiv url: http://arxiv.org/abs/2410.00263v1
- Date: Mon, 30 Sep 2024 22:21:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 06:46:17.053657
- Title: Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation
- Title(参考訳): 階層的知識を付加した手術用ビデオ言語事前学習法
- Authors: Kun Yuan, Vinkle Srivastav, Nassir Navab, Nicolas Padoy,
- Abstract要約: 手術用ビデオ言語事前学習は、知識領域のギャップとマルチモーダルデータの不足により、独特な課題に直面している。
本稿では,これらの課題に対処するために,階層的知識向上手法と新しい手術的知識向上型ビデオランゲージ事前学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 51.222684687924215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surgical video-language pretraining (VLP) faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data. This study aims to bridge the gap by addressing issues regarding textual information loss in surgical lecture videos and the spatial-temporal challenges of surgical VLP. We propose a hierarchical knowledge augmentation approach and a novel Procedure-Encoded Surgical Knowledge-Augmented Video-Language Pretraining (PeskaVLP) framework to tackle these issues. The knowledge augmentation uses large language models (LLM) for refining and enriching surgical concepts, thus providing comprehensive language supervision and reducing the risk of overfitting. PeskaVLP combines language supervision with visual self-supervision, constructing hard negative samples and employing a Dynamic Time Warping (DTW) based loss function to effectively comprehend the cross-modal procedural alignment. Extensive experiments on multiple public surgical scene understanding and cross-modal retrieval datasets show that our proposed method significantly improves zero-shot transferring performance and offers a generalist visual representation for further advancements in surgical scene understanding.
- Abstract(参考訳): 手術用ビデオ言語事前訓練(VLP)は,知識領域のギャップとマルチモーダルデータの不足により,独特な課題に直面している。
本研究の目的は,外科的講義ビデオにおけるテキスト情報損失の問題と,外科的VLPの時空間的課題に対処することでギャップを埋めることである。
本稿では,これらの課題に対処するために,階層的知識向上手法と新しい手術的知識向上型ビデオランゲージ事前訓練(PeskaVLP)フレームワークを提案する。
知識増強は、外科的概念を洗練・強化するために大きな言語モデル(LLM)を使用し、包括的な言語監督と過剰適合のリスクを低減する。
PeskaVLPは、言語監督と視覚的自己監督を結合し、強い負のサンプルを構築し、動的時間ウォーピング(DTW)に基づく損失関数を用いて、モーダルな手続き的アライメントを効果的に理解する。
複数の公開手術シーン理解とクロスモーダル検索データセットに対する広範囲な実験により,提案手法はゼロショット転送性能を大幅に向上し,手術シーン理解のさらなる進歩に汎用的な視覚表現を提供することが示された。
関連論文リスト
- OphCLIP: Hierarchical Retrieval-Augmented Learning for Ophthalmic Surgical Video-Language Pretraining [55.15365161143354]
OphCLIPは、眼科手術ワークフロー理解のための階層的検索強化視覚言語事前学習フレームワークである。
OphCLIPは、短いビデオクリップと詳細な物語記述、構造化タイトルによるフルビデオの調整によって、細粒度と長期の視覚表現の両方を学習する。
我々のOphCLIPは、探索されていない大規模なサイレント手術ビデオを活用するために、検索強化事前訓練フレームワークも設計している。
論文 参考訳(メタデータ) (2024-11-23T02:53:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Surgical-LLaVA: Toward Surgical Scenario Understanding via Large Language and Vision Models [1.4042211166197214]
手術シナリオに特化して設計されたLVLMについて紹介する。
LVLMモデルであるオペレーショナル・ラヴァを手術シナリオのデータに基づいて微調整した。
外科的ララバは、外科的文脈において、印象的なマルチモーダルチャット能力を示すことを示す実験である。
論文 参考訳(メタデータ) (2024-10-13T07:12:35Z) - Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery [15.47190687192761]
本稿では, 複雑な手術シナリオに適した, パーソナライズされた大規模視覚言語モデルであるオペレーショナル-LVLMを紹介する。
本研究では,EndoVis-17-VQLA,EndoVis-18-VQLA,新たに導入されたEndoVis Conversationsデータセットなど,いくつかのベンチマークにおける手術用LVLMの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T08:38:27Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
本稿では,MLLMの視覚知覚能力を向上させるために,知識の混合強化機構を提案する。
本稿では,マルチタスクエンコーダとビジュアルツールを既存のMLLM訓練と推論パイプラインに組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T02:02:34Z) - Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures [51.78027546947034]
外科的コンピュータビジョンの最近の進歩は、言語意味論に欠ける視覚のみのモデルによって推進されている。
本稿では,eラーニングプラットフォームからの手術ビデオ講義を活用し,効果的な視覚情報と言語監督信号を提供する。
テキスト書き起こしのための複数自動音声認識システムを用いて,手術固有の言語課題に対処する。
論文 参考訳(メタデータ) (2023-07-27T22:38:12Z) - CAT-ViL: Co-Attention Gated Vision-Language Embedding for Visual
Question Localized-Answering in Robotic Surgery [14.52406034300867]
手術用視覚質問定位回答システム(VQLA)は、医療学生やジュニア外科医が記録された手術ビデオから学び、理解するのに役立ちます。
手術シナリオにおけるVQLAに対するCAT-ViL(Co-Attention gaTed Vision-Language)を組み込んだエンドツーエンドトランスフォーマを提案する。
提案手法は,外科的シーン理解のための有望なソリューションを提供し,外科的訓練のための人工知能(AI)ベースのVQLAシステムにおける第一歩を開拓する。
論文 参考訳(メタデータ) (2023-07-11T11:35:40Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。