AARK: An Open Toolkit for Autonomous Racing Research
- URL: http://arxiv.org/abs/2410.00358v1
- Date: Tue, 1 Oct 2024 03:07:48 GMT
- Title: AARK: An Open Toolkit for Autonomous Racing Research
- Authors: James Bockman, Matthew Howe, Adrian Orenstein, Feras Dayoub,
- Abstract summary: AARK aims to unify and democratise research into a field critical to providing safer roads and trusted autonomous systems.
AARK provides three packages, ACI, ACDG, and ACIC.
- Score: 3.0882784925816997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous racing demands safe control of vehicles at their physical limits for extended periods of time, providing insights into advanced vehicle safety systems which increasingly rely on intervention provided by vehicle autonomy. Participation in this field carries with it a high barrier to entry. Physical platforms and their associated sensor suites require large capital outlays before any demonstrable progress can be made. Simulators allow researches to develop soft autonomous systems without purchasing a platform. However, currently available simulators lack visual and dynamic fidelity, can still be expensive to buy, lack customisation, and are difficult to use. AARK provides three packages, ACI, ACDG, and ACMPC. These packages enable research into autonomous control systems in the demanding environment of racing to bring more people into the field and improve reproducibility: ACI provides researchers with a computer vision-friendly interface to Assetto Corsa for convenient comparison and evaluation of autonomous control solutions; ACDG enables generation of depth, normal and semantic segmentation data for training computer vision models to use in perception systems; and ACMPC gives newcomers to the field a modular full-stack autonomous control solution, capable of controlling vehicles to build from. AARK aims to unify and democratise research into a field critical to providing safer roads and trusted autonomous systems.
Related papers
- A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry [0.0]
We study a highway ramp function that controls the vehicles forward-moving actions to minimize collisions with the stream of highway traffic into which a merging (ego) vehicle enters.
We take a game-theoretic multi-agent (MA) approach to this problem and study the use of controllers based on deep reinforcement learning (DRL)
The work presented in this paper extends existing work by studying the interaction of more than two vehicles (agents) and does so by systematically expanding the road scene with additional traffic and ego vehicles.
arXiv Detail & Related papers (2024-11-21T21:23:46Z) - Fast and Modular Autonomy Software for Autonomous Racing Vehicles [24.2222961043227]
The Indy Autonomous Challenge (IAC) is an international competition aiming to advance autonomous vehicle development.
This paper details the MIT-Pitt-RW Team's approach to autonomous racing in the IAC.
We present our modular and fast approach to agent detection, motion planning and controls to create an autonomy stack.
arXiv Detail & Related papers (2024-08-27T21:57:16Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Autonomous Driving with Deep Reinforcement Learning in CARLA Simulation [0.0]
We use Deep Q-Learning to learn a policy by which an autonomous car may maintain its lane at top speed while avoiding other vehicles.
After that, we used CARLA simulation environment to test and verify our newly acquired policy.
arXiv Detail & Related papers (2023-06-20T00:54:20Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Indy Autonomous Challenge -- Autonomous Race Cars at the Handling Limits [81.22616193933021]
The team TUM Auton-omous Motorsports will participate in the Indy Autonomous Challenge in Octo-ber 2021.
It will benchmark its self-driving software-stack by racing one out of ten autonomous Dallara AV-21 racecars at the Indianapolis Motor Speedway.
It is an ideal testing ground for the development of autonomous driving algorithms capable of mastering the most challenging and rare situations.
arXiv Detail & Related papers (2022-02-08T11:55:05Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
We propose a framework that integrates autonomous control, explainable AI (XAI), and regulatory compliance.
We describe relevant XAI approaches that can help achieve the goals of the framework.
arXiv Detail & Related papers (2021-11-20T05:06:22Z) - DriverGym: Democratising Reinforcement Learning for Autonomous Driving [75.91049219123899]
We propose DriverGym, an open-source environment for developing reinforcement learning algorithms for autonomous driving.
DriverGym provides access to more than 1000 hours of expert logged data and also supports reactive and data-driven agent behavior.
The performance of an RL policy can be easily validated on real-world data using our extensive and flexible closed-loop evaluation protocol.
arXiv Detail & Related papers (2021-11-12T11:47:08Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
This paper presents the architecture design for the navigation of an autonomous vehicle in a simulated urban environment.
Our architecture was made towards meeting the requirements of CARLA Autonomous Driving Challenge.
arXiv Detail & Related papers (2020-10-23T18:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.