Autonomous Driving with Deep Reinforcement Learning in CARLA Simulation
- URL: http://arxiv.org/abs/2306.11217v1
- Date: Tue, 20 Jun 2023 00:54:20 GMT
- Title: Autonomous Driving with Deep Reinforcement Learning in CARLA Simulation
- Authors: Jumman Hossain
- Abstract summary: We use Deep Q-Learning to learn a policy by which an autonomous car may maintain its lane at top speed while avoiding other vehicles.
After that, we used CARLA simulation environment to test and verify our newly acquired policy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, autonomous vehicles are gaining traction due to their numerous
potential applications in resolving a variety of other real-world challenges.
However, developing autonomous vehicles need huge amount of training and
testing before deploying it to real world. While the field of reinforcement
learning (RL) has evolved into a powerful learning framework to the development
of deep representation learning, and it is now capable of learning complicated
policies in high-dimensional environments like in autonomous vehicles. In this
regard, we make an effort, using Deep Q-Learning, to discover a method by which
an autonomous car may maintain its lane at top speed while avoiding other
vehicles. After that, we used CARLA simulation environment to test and verify
our newly acquired policy based on the problem formulation.
Related papers
- Self-Driving Car Racing: Application of Deep Reinforcement Learning [0.0]
The project aims to develop an AI agent that efficiently drives a simulated car in the OpenAI Gymnasium CarRacing environment.
We investigate various RL algorithms, including Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and novel adaptations that incorporate transfer learning and recurrent neural networks (RNNs) for enhanced performance.
arXiv Detail & Related papers (2024-10-30T07:32:25Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
Deep reinforcement learning is a promising approach to learning policies in uncontrolled environments.
Recent advancements in machine learning algorithms and libraries combined with a carefully tuned robot controller lead to learning quadruped in only 20 minutes in the real world.
arXiv Detail & Related papers (2022-08-16T17:37:36Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - An Independent Study of Reinforcement Learning and Autonomous Driving [0.0]
We studied the Q-learning algorithm for tabular environments and applied it successfully to an OpenAi Gym environment, Taxi.
Secondly, we gained an understanding of and implemented the deep Q-network algorithm for Cart-Pole environment.
We trained a rough autonomous driving agent using highway-gym environment and explored the effects of various environment configurations like reward functions on the agent training performance.
arXiv Detail & Related papers (2021-08-20T23:46:12Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
Multi-agent interaction is a fundamental aspect of autonomous driving in the real world.
Despite more than a decade of research and development, the problem of how to interact with diverse road users in diverse scenarios remains largely unsolved.
We develop a dedicated simulation platform called SMARTS that generates diverse and competent driving interactions.
arXiv Detail & Related papers (2020-10-19T18:26:10Z) - Interpretable End-to-end Urban Autonomous Driving with Latent Deep
Reinforcement Learning [32.97789225998642]
We propose an interpretable deep reinforcement learning method for end-to-end autonomous driving.
A sequential latent environment model is introduced and learned jointly with the reinforcement learning process.
Our method is able to provide a better explanation of how the car reasons about the driving environment.
arXiv Detail & Related papers (2020-01-23T18:36:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.