Dynamic neurons: A statistical physics approach for analyzing deep neural networks
- URL: http://arxiv.org/abs/2410.00396v1
- Date: Tue, 1 Oct 2024 04:39:04 GMT
- Title: Dynamic neurons: A statistical physics approach for analyzing deep neural networks
- Authors: Donghee Lee, Hye-Sung Lee, Jaeok Yi,
- Abstract summary: We treat neurons as additional degrees of freedom in interactions, simplifying the structure of deep neural networks.
By utilizing translational symmetry and renormalization group transformations, we can analyze critical phenomena.
This approach may open new avenues for studying deep neural networks using statistical physics.
- Score: 1.9662978733004601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network architectures often consist of repetitive structural elements. We introduce a new approach that reveals these patterns and can be broadly applied to the study of deep learning. Similar to how a power strip helps untangle and organize complex cable connections, this approach treats neurons as additional degrees of freedom in interactions, simplifying the structure and enhancing the intuitive understanding of interactions within deep neural networks. Furthermore, it reveals the translational symmetry of deep neural networks, which simplifies the application of the renormalization group transformation - a method that effectively analyzes the scaling behavior of the system. By utilizing translational symmetry and renormalization group transformations, we can analyze critical phenomena. This approach may open new avenues for studying deep neural networks using statistical physics.
Related papers
- Collective variables of neural networks: empirical time evolution and scaling laws [0.535514140374842]
We show that certain measures on the spectrum of the empirical neural tangent kernel, specifically entropy and trace, yield insight into the representations learned by a neural network.
Results are demonstrated first on test cases before being shown on more complex networks, including transformers, auto-encoders, graph neural networks, and reinforcement learning studies.
arXiv Detail & Related papers (2024-10-09T21:37:14Z) - Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Introduction to dynamical mean-field theory of generic random neural
networks [2.0711789781518752]
It is not easy for beginners to access the essence of this tool and the underlying physics.
We give a pedagogical introduction of this method in a particular example of generic random neural networks.
The numerical implementation of solving the integro-differential mean-field equations is also detailed.
arXiv Detail & Related papers (2023-05-15T09:01:40Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
In mechanics, the new and active field of physics-informed neural networks attempts to mitigate this disadvantage by designing deep neural networks on the basis of mechanical knowledge.
We propose a first step towards a physics-forming-in approach, which explains neural networks trained on mechanical data a posteriori.
Therein, the principal component analysis decorrelates the distributed representations in cell states of RNNs and allows the comparison to known and fundamental functions.
arXiv Detail & Related papers (2021-04-20T18:38:52Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
We define a notion of complexity, which quantifies the nonlinearity of the computation of a neural network.
We investigate these observables both for trained networks as well as explore their dynamics during training.
arXiv Detail & Related papers (2020-06-08T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.