論文の概要: Scalable Multi-Task Transfer Learning for Molecular Property Prediction
- arxiv url: http://arxiv.org/abs/2410.00432v1
- Date: Tue, 1 Oct 2024 06:28:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:36:46.240983
- Title: Scalable Multi-Task Transfer Learning for Molecular Property Prediction
- Title(参考訳): 分子特性予測のためのスケーラブルなマルチタスク伝達学習
- Authors: Chanhui Lee, Dae-Woong Jeong, Sung Moon Ko, Sumin Lee, Hyunseung Kim, Soorin Yim, Sehui Han, Sungwoong Kim, Sungbin Lim,
- Abstract要約: 提案手法は, 最適転移率を自動的に取得することにより, 分子特性予測のためのスケーラブルなマルチタスク変換学習を可能にする。
実験により,提案手法は40の分子特性の予測性能を向上し,トレーニング収束を加速した。
- 参考スコア(独自算出の注目度): 10.512534299496725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecules have a number of distinct properties whose importance and application vary. Often, in reality, labels for some properties are hard to achieve despite their practical importance. A common solution to such data scarcity is to use models of good generalization with transfer learning. This involves domain experts for designing source and target tasks whose features are shared. However, this approach has limitations: i). Difficulty in accurate design of source-target task pairs due to the large number of tasks, and ii). corresponding computational burden verifying many trials and errors of transfer learning design, thereby iii). constraining the potential of foundation modeling of multi-task molecular property prediction. We address the limitations of the manual design of transfer learning via data-driven bi-level optimization. The proposed method enables scalable multi-task transfer learning for molecular property prediction by automatically obtaining the optimal transfer ratios. Empirically, the proposed method improved the prediction performance of 40 molecular properties and accelerated training convergence.
- Abstract(参考訳): 分子はいくつかの異なる性質を持ち、その重要性と応用は様々である。
実際には、実際的な重要性にもかかわらず、いくつかの特性のラベルは達成し難いことが多い。
このようなデータ不足に対する一般的な解決策は、伝達学習による優れた一般化モデルを使用することである。
これには、ソースを設計するためのドメインエキスパートと、機能を共有するターゲットタスクが含まれる。
しかし、このアプローチには制限がある。
i)。
タスク数の多さによるソースターゲットタスクペアの正確な設計の難しさと問題点
i)。
伝達学習設計の多くの試行錯誤を検証し,それに対応する計算負担
iii)。
マルチタスク分子特性予測の基礎モデリングの可能性を制限する。
データ駆動バイレベル最適化によるトランスファーラーニングの手動設計の限界に対処する。
提案手法は, 最適転移率を自動的に取得することにより, 分子特性予測のためのスケーラブルなマルチタスク変換学習を可能にする。
実験により,提案手法は40の分子特性の予測性能を向上し,トレーニング収束を加速した。
関連論文リスト
- Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning [79.75718786477638]
我々は、それらを接続する物理法則が存在する分子的タスクの専門性を生かし、整合性トレーニングアプローチを設計する。
より正確なエネルギーデータにより、構造予測の精度が向上することを示した。
また、整合性トレーニングは、構造予測を改善するために、力と非平衡構造データを直接活用できることがわかった。
論文 参考訳(メタデータ) (2024-10-14T03:11:33Z) - Multitask methods for predicting molecular properties from heterogeneous data [0.27309692684728615]
マルチタスクガウス過程の回帰は、高価なデータソースと安価なデータソースの両方を活用することで制限を克服することを示した。
マルチタスクサロゲートは,データ生成コストを1桁以上削減し,CCレベルの精度で予測可能であることを報告した。
マルチタスクレグレッションは、既存のデータソースを機会的に活用することによって、データ生成コストをさらに削減するためのツールである。
論文 参考訳(メタデータ) (2024-01-31T15:04:03Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
HASTEは、ターゲットデータのより厳しいサブセットのみを用いて、ソースモデルの特定のターゲットタスクへの転送可能性を推定する新しい戦略である。
HASTEは既存の転送可能性測定値と組み合わせて信頼性を向上させることができることを示す。
複数のソースモデルアーキテクチャ、ターゲットデータセット、トランスファー学習タスクにまたがる実験結果から、HASTEの修正されたメトリクスは、一貫して、あるいは、アートトランスファービリティーメトリクスの状態と同等であることが示された。
論文 参考訳(メタデータ) (2023-01-17T14:50:18Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
マルチタスク学習は、複数のタスクから学習できるモデルが知識伝達によってより良い品質と効率を達成すると仮定する。
最先端のMLモデルは、タスクごとに高いカスタマイズに依存し、タスクの数をスケールするのではなく、サイズとデータスケールを活用する。
本稿では,大規模マルチタスクモデルを生成でき,新しいタスクの動的かつ連続的な追加を支援する進化的手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T13:10:47Z) - Tyger: Task-Type-Generic Active Learning for Molecular Property
Prediction [121.97742787439546]
分子の性質を正確に予測する方法は、AIによる薬物発見において重要な問題である。
アノテーションのコストを削減するため,注釈付けのための最も代表的で情報性の高いデータのみを選択するために,深層能動学習法が開発された。
本稿では,異なるタイプの学習タスクを統一的に処理できるタスク型汎用能動的学習フレームワーク(Tyger)を提案する。
論文 参考訳(メタデータ) (2022-05-23T12:56:12Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
本稿では,最適化手順をエンドツーエンドの学習プロセスに変換する深層強化学習手法を提案する。
実世界のデータを用いた実験により,本手法はモデルに依存しず,モデル予測からのフィードバックのみに依存することがわかった。
論文 参考訳(メタデータ) (2021-06-04T16:54:36Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
我々は、教師なし学習されたモデルの動物園から別のネットワークへ知識を伝達する方法を研究する。
私たちのモチベーションは、モデルは異なるソースからの複雑なダイナミクスを理解することが期待されていることです。
提案手法は,時間的予測のための3つのベンチマークで大幅に改善され,重要度が低いベンチマークであっても,ターゲットのメリットが得られた。
論文 参考訳(メタデータ) (2020-09-24T15:40:55Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。