論文の概要: Enhancing Sentinel-2 Image Resolution: Evaluating Advanced Techniques based on Convolutional and Generative Neural Networks
- arxiv url: http://arxiv.org/abs/2410.00516v1
- Date: Tue, 1 Oct 2024 08:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:07:10.047885
- Title: Enhancing Sentinel-2 Image Resolution: Evaluating Advanced Techniques based on Convolutional and Generative Neural Networks
- Title(参考訳): Sentinel-2イメージレゾリューションの強化:畳み込みと生成ニューラルネットワークに基づく高度な技術の評価
- Authors: Patrick Kramer, Alexander Steinhardt, Barbara Pedretscher,
- Abstract要約: 本稿では,高分解能化技術を用いてスペクトル情報を含むセンチネル2バンドにおける空間分解能の2。
最先端CNNモデルは、品質と実現可能性の観点から強化されたGANアプローチと比較される。
GANベースのモデルは、明瞭で詳細な画像を提供するだけでなく、定量的評価の観点からも優れた性能を示す。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the enhancement of spatial resolution in Sentinel-2 bands that contain spectral information using advanced super-resolution techniques by a factor of 2. State-of-the-art CNN models are compared with enhanced GAN approaches in terms of quality and feasibility. Therefore, a representative dataset comprising Sentinel-2 low-resolution images and corresponding high-resolution aerial orthophotos is required. Literature study reveals no feasible dataset for the land type of interest (forests), for which reason an adequate dataset had to be generated in addition, accounting for accurate alignment and image source optimization. The results reveal that while CNN-based approaches produce satisfactory outcomes, they tend to yield blurry images. In contrast, GAN-based models not only provide clear and detailed images, but also demonstrate superior performance in terms of quantitative assessment, underlying the potential of the framework beyond the specific land type investigated.
- Abstract(参考訳): 本稿では,高分解能化技術を用いてスペクトル情報を含むセンチネル2バンドにおける空間分解能の2。
最先端CNNモデルは、品質と実現可能性の観点から強化されたGANアプローチと比較される。
そのため、Sentinel-2低分解能画像とそれに対応する高分解能空中写真からなる代表データセットが必要である。
文献研究により、土地の利害関係(森林)に関する有効なデータセットは明らかにされていないが、そのために適切なデータセットを生成する必要があり、正確なアライメントと画像ソースの最適化を考慮に入れなければならない。
その結果、CNNベースのアプローチは良好な結果をもたらすが、ぼやけた画像が得られる傾向にあることが明らかとなった。
対照的に、GANベースのモデルは、明確で詳細な画像を提供するだけでなく、定量的評価の観点からも優れた性能を示す。
関連論文リスト
- Underwater SONAR Image Classification and Analysis using LIME-based Explainable Artificial Intelligence [0.0]
本稿では,水中画像分類結果の解釈に,eXplainable Artificial Intelligence (XAI)ツールの適用について検討する。
ベンチマーク畳み込みニューラルネットワーク(CNN)アーキテクチャを用いた画像分類のための転写学習手法の広範な解析を行う。
XAIのテクニックは、結果の解釈可能性をより人間に準拠した方法で強調することで、信頼性と信頼性を高めます。
論文 参考訳(メタデータ) (2024-08-23T04:54:18Z) - S2RC-GCN: A Spatial-Spectral Reliable Contrastive Graph Convolutional Network for Complex Land Cover Classification Using Hyperspectral Images [10.579474650543471]
本研究ではS2RC-GCNという新しい空間スペクトル信頼性コントラストグラフ畳み込み分類フレームワークを提案する。
具体的には、1Dエンコーダと2Dエンコーダによって抽出されたスペクトルと空間の特徴を融合させ、2Dエンコーダは重要な情報を自動抽出するアテンションモデルを含む。
次に、融合した高次特徴を活用してグラフを構築し、結果のグラフをGCNに供給し、より効率的なグラフ表現を決定する。
論文 参考訳(メタデータ) (2024-04-01T07:17:02Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Efficient texture-aware multi-GAN for image inpainting [5.33024001730262]
近年のGAN (Generative Adversarial Network) のインペイント手法は顕著に改善されている。
本稿では,性能とレンダリング効率の両方を改善するマルチGANアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-09-30T14:58:03Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
本研究では,スムースとディテールを段階的に分割・収束的に処理する,目的・解釈可能なディテール・ファイダリティ・アテンション・ネットワークを提案する。
特に,詳細推論において顕著な解釈可能な特徴表現のためのヘシアンフィルタを提案する。
実験により,提案手法は最先端手法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-09-28T08:31:23Z) - Unlimited Resolution Image Generation with R2D2-GANs [69.90258455164513]
本稿では,任意の解像度の高品質な画像を生成するための新しいシミュレーション手法を提案する。
この方法では、フル長のミッション中に収集したソナースキャンと同等の大きさのソナースキャンを合成することができる。
生成されたデータは、連続的で、現実的に見え、また、取得の実際の速度の少なくとも2倍の速さで生成される。
論文 参考訳(メタデータ) (2020-03-02T17:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。