Analysing the Influence of Reorder Strategies for Cartesian Genetic Programming
- URL: http://arxiv.org/abs/2410.00518v1
- Date: Tue, 1 Oct 2024 08:59:01 GMT
- Title: Analysing the Influence of Reorder Strategies for Cartesian Genetic Programming
- Authors: Henning Cui, Andreas Margraf, Jörg Hähner,
- Abstract summary: We introduce three novel operators which reorder the genotype of a graph defined by CGP.
We show that the number of iterations until a solution is found and/or the fitness value improves by using CGP with a reorder method.
However, there is no consistently best performing reorder operator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cartesian Genetic Programming (CGP) suffers from a specific limitation: Positional bias, a phenomenon in which mostly genes at the start of the genome contribute to a program output, while genes at the end rarely do. This can lead to an overall worse performance of CGP. One solution to overcome positional bias is to introduce reordering methods, which shuffle the current genotype without changing its corresponding phenotype. There are currently two different reorder operators that extend the classic CGP formula and improve its fitness value. In this work, we discuss possible shortcomings of these two existing operators. Afterwards, we introduce three novel operators which reorder the genotype of a graph defined by CGP. We show empirically on four Boolean and four symbolic regression benchmarks that the number of iterations until a solution is found and/or the fitness value improves by using CGP with a reorder method. However, there is no consistently best performing reorder operator. Furthermore, their behaviour is analysed by investigating their convergence plots and we show that all behave the same in terms of convergence type.
Related papers
- Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
Gene regulatory networks (GRN) describe interactions between genes and their products that control gene expression and cellular function.
Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over DAGs, but not both.
In this paper we leverage the fact that it is possible to estimate the "velocity" of gene expression with RNA velocity techniques to develop an approach that addresses both challenges.
arXiv Detail & Related papers (2023-02-08T16:36:40Z) - Orthogonal Graph Neural Networks [53.466187667936026]
Graph neural networks (GNNs) have received tremendous attention due to their superiority in learning node representations.
stacking more convolutional layers significantly decreases the performance of GNNs.
We propose a novel Ortho-GConv, which could generally augment the existing GNN backbones to stabilize the model training and improve the model's generalization performance.
arXiv Detail & Related papers (2021-09-23T12:39:01Z) - On the Genotype Compression and Expansion for Evolutionary Algorithms in
the Continuous Domain [7.152439554068968]
We consider genotype compression (where genotype is smaller than phenotype) and expansion (genotype is larger than phenotype)
We test our approach with several evolutionary algorithms over three sets of optimization problems.
arXiv Detail & Related papers (2021-05-24T18:56:18Z) - Zoetrope Genetic Programming for Regression [2.642406403099596]
The Zoetrope Genetic Programming (ZGP) algorithm is based on an original representation for mathematical expressions.
ZGP is validated using a large number of public domain regression datasets.
arXiv Detail & Related papers (2021-02-26T10:47:10Z) - Genetic Programming is Naturally Suited to Evolve Bagging Ensembles [0.0]
We show that minor changes to fitness evaluation and selection are sufficient to make a simple and otherwise-traditional GP algorithm evolve efficiently.
Our algorithm fares very well against state-of-the-art ensemble and non-ensemble GP algorithms.
arXiv Detail & Related papers (2020-09-13T16:28:11Z) - When Does Preconditioning Help or Hurt Generalization? [74.25170084614098]
We show how the textitimplicit bias of first and second order methods affects the comparison of generalization properties.
We discuss several approaches to manage the bias-variance tradeoff, and the potential benefit of interpolating between GD and NGD.
arXiv Detail & Related papers (2020-06-18T17:57:26Z) - Obtaining Basic Algebra Formulas with Genetic Programming and Functional
Rewriting [0.0]
We use functional programming rewriting to boost inductive genetic programming.
Parents are selected following a tournament selection mechanism and the next population is obtained following a steady-state strategy.
We compare the performance of our technique in a set of hard problems (for classical genetic programming)
arXiv Detail & Related papers (2020-05-03T23:32:36Z) - Semantically-Oriented Mutation Operator in Cartesian Genetic Programming
for Evolutionary Circuit Design [0.5414308305392761]
We propose a semantically-oriented mutation operator (SOMO) suitable for the evolutionary design of combinational circuits.
Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster.
The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.
arXiv Detail & Related papers (2020-04-23T08:15:48Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.