On the Genotype Compression and Expansion for Evolutionary Algorithms in
the Continuous Domain
- URL: http://arxiv.org/abs/2105.11502v1
- Date: Mon, 24 May 2021 18:56:18 GMT
- Title: On the Genotype Compression and Expansion for Evolutionary Algorithms in
the Continuous Domain
- Authors: Lucija Planinic, Marko Djurasevic, Luca Mariot, Domagoj Jakobovic,
Stjepan Picek, Carlos Coello Coello
- Abstract summary: We consider genotype compression (where genotype is smaller than phenotype) and expansion (genotype is larger than phenotype)
We test our approach with several evolutionary algorithms over three sets of optimization problems.
- Score: 7.152439554068968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the influence of genotype size on evolutionary
algorithms' performance. We consider genotype compression (where genotype is
smaller than phenotype) and expansion (genotype is larger than phenotype) and
define different strategies to reconstruct the original variables of the
phenotype from both the compressed and expanded genotypes. We test our approach
with several evolutionary algorithms over three sets of optimization problems:
COCO benchmark functions, modeling of Physical Unclonable Functions, and neural
network weight optimization. Our results show that genotype expansion works
significantly better than compression, and in many scenarios, outperforms the
original genotype encoding. This could be attributed to the change in the
genotype-phenotype mapping introduced with the expansion methods: this
modification beneficially transforms the domain landscape and alleviates the
search space traversal.
Related papers
- Analysing the Influence of Reorder Strategies for Cartesian Genetic Programming [0.0]
We introduce three novel operators which reorder the genotype of a graph defined by CGP.
We show that the number of iterations until a solution is found and/or the fitness value improves by using CGP with a reorder method.
However, there is no consistently best performing reorder operator.
arXiv Detail & Related papers (2024-10-01T08:59:01Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Phenotype Search Trajectory Networks for Linear Genetic Programming [8.079719491562305]
Neutrality is the observation that some mutations do not lead to phenotypic changes.
We study the search trajectories of a genetic programming system as graph-based models.
We measure the characteristics of phenotypes including their genotypic abundance and Kolmogorov complexity.
arXiv Detail & Related papers (2022-11-15T21:20:50Z) - Graph Coloring via Neural Networks for Haplotype Assembly and Viral
Quasispecies Reconstruction [8.828330486848753]
We develop a new method, called NeurHap, that combines graph representation learning with optimization.
Our experiments demonstrate substantially better performance of NeurHap in real and synthetic datasets compared to competing approaches.
arXiv Detail & Related papers (2022-10-21T12:53:09Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Expressivity of Parameterized and Data-driven Representations in Quality
Diversity Search [111.06379262544911]
We compare the output diversity of a quality diversity evolutionary search performed in two different search spaces.
A learned model is better at interpolating between known data points than at extrapolating or expanding towards unseen examples.
arXiv Detail & Related papers (2021-05-10T10:27:43Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z) - A Memory Optimized Data Structure for Binary Chromosomes in Genetic
Algorithm [0.0]
This paper presents a memory-optimized metadata-based data structure for implementation of binary chromosome in Genetic Algorithm.
The approach improves the memory utilization as well as capacity of retaining alleles.
arXiv Detail & Related papers (2021-02-24T15:49:11Z) - GeneCAI: Genetic Evolution for Acquiring Compact AI [36.04715576228068]
Deep Neural Networks (DNNs) are evolving towards more complex architectures to achieve higher inference accuracy.
Model compression techniques can be leveraged to efficiently deploy such compute-intensive architectures on resource-limited mobile devices.
This paper introduces GeneCAI, a novel optimization method that automatically learns how to tune per-layer compression hyper- parameters.
arXiv Detail & Related papers (2020-04-08T20:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.