Design and Identification of Keypoint Patches in Unstructured Environments
- URL: http://arxiv.org/abs/2410.00521v1
- Date: Tue, 1 Oct 2024 09:05:50 GMT
- Title: Design and Identification of Keypoint Patches in Unstructured Environments
- Authors: Taewook Park, Seunghwan Kim, Hyondong Oh,
- Abstract summary: Keypoint identification in an image allows direct mapping from raw images to 2D coordinates.
We propose four simple yet distinct designs that consider various scale, rotation and camera projection.
We customize the Superpoint network to ensure robust detection under various types of image degradation.
- Score: 7.940068522906917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable perception of targets is crucial for the stable operation of autonomous robots. A widely preferred method is keypoint identification in an image, as it allows direct mapping from raw images to 2D coordinates, facilitating integration with other algorithms like localization and path planning. In this study, we closely examine the design and identification of keypoint patches in cluttered environments, where factors such as blur and shadows can hinder detection. We propose four simple yet distinct designs that consider various scale, rotation and camera projection using a limited number of pixels. Additionally, we customize the Superpoint network to ensure robust detection under various types of image degradation. The effectiveness of our approach is demonstrated through real-world video tests, highlighting potential for vision-based autonomous systems.
Related papers
- Differentiable Registration of Images and LiDAR Point Clouds with
VoxelPoint-to-Pixel Matching [58.10418136917358]
Cross-modality registration between 2D images from cameras and 3D point clouds from LiDARs is a crucial task in computer vision and robotic training.
Previous methods estimate 2D-3D correspondences by matching point and pixel patterns learned by neural networks.
We learn a structured cross-modality matching solver to represent 3D features via a different latent pixel space.
arXiv Detail & Related papers (2023-12-07T05:46:10Z) - LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for
Place Recognition [11.206532393178385]
We present a novel neural network named LCPR for robust multimodal place recognition.
Our method can effectively utilize multi-view camera and LiDAR data to improve the place recognition performance.
arXiv Detail & Related papers (2023-11-06T15:39:48Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
Recent object (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios.
We propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and camouflaged zooming in and out.
Our framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
arXiv Detail & Related papers (2023-10-31T06:11:23Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
Multi-Camera 3D Object Detection (MC3D-Det) has gained prominence with the advent of bird's-eye view (BEV) approaches.
We propose a novel method that aligns 3D detection with 2D camera plane results, ensuring consistent and accurate detections.
arXiv Detail & Related papers (2023-10-17T15:31:28Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
Face forgery recognition methods can only process one face at a time.
Most face forgery recognition methods can only process one face at a time.
We propose COMICS, an end-to-end framework for multi-face forgery detection.
arXiv Detail & Related papers (2023-08-03T03:37:13Z) - Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images [7.451395029642832]
Keypoint detection and matching is a fundamental task in many computer vision problems.
In this work, we focus on the case when this is caused by the geometry of the cameras used for image acquisition.
We build on a state-of-the-art approach and derive a self-supervised procedure that enables training an interest point detector and descriptor network.
arXiv Detail & Related papers (2023-06-02T22:39:33Z) - Self-Supervised Equivariant Learning for Oriented Keypoint Detection [35.94215211409985]
We introduce a self-supervised learning framework using rotation-equivariant CNNs to learn to detect robust oriented keypoints.
We propose a dense orientation alignment loss by an image pair generated by synthetic transformations for training a histogram-based orientation map.
Our method outperforms the previous methods on an image matching benchmark and a camera pose estimation benchmark.
arXiv Detail & Related papers (2022-04-19T02:26:07Z) - Weakly Supervised Keypoint Discovery [27.750244813890262]
We propose a method for keypoint discovery from a 2D image using image-level supervision.
Motivated by the weakly-supervised learning approach, our method exploits image-level supervision to identify discriminative parts.
Our approach achieves state-of-the-art performance for the task of keypoint estimation on the limited supervision scenarios.
arXiv Detail & Related papers (2021-09-28T01:26:53Z) - P2-Net: Joint Description and Detection of Local Features for Pixel and
Point Matching [78.18641868402901]
This work takes the initiative to establish fine-grained correspondences between 2D images and 3D point clouds.
An ultra-wide reception mechanism in combination with a novel loss function are designed to mitigate the intrinsic information variations between pixel and point local regions.
arXiv Detail & Related papers (2021-03-01T14:59:40Z) - Every Pixel Matters: Center-aware Feature Alignment for Domain Adaptive
Object Detector [95.51517606475376]
A domain adaptive object detector aims to adapt itself to unseen domains that may contain variations of object appearance, viewpoints or backgrounds.
We propose a domain adaptation framework that accounts for each pixel via predicting pixel-wise objectness and centerness.
arXiv Detail & Related papers (2020-08-19T17:57:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.