Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images
- URL: http://arxiv.org/abs/2306.01938v1
- Date: Fri, 2 Jun 2023 22:39:33 GMT
- Title: Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images
- Authors: Marcela Mera-Trujillo, Shivang Patel, Yu Gu, Gianfranco Doretto
- Abstract summary: Keypoint detection and matching is a fundamental task in many computer vision problems.
In this work, we focus on the case when this is caused by the geometry of the cameras used for image acquisition.
We build on a state-of-the-art approach and derive a self-supervised procedure that enables training an interest point detector and descriptor network.
- Score: 7.451395029642832
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Keypoint detection and matching is a fundamental task in many computer vision
problems, from shape reconstruction, to structure from motion, to AR/VR
applications and robotics. It is a well-studied problem with remarkable
successes such as SIFT, and more recent deep learning approaches. While great
robustness is exhibited by these techniques with respect to noise, illumination
variation, and rigid motion transformations, less attention has been placed on
image distortion sensitivity. In this work, we focus on the case when this is
caused by the geometry of the cameras used for image acquisition, and consider
the keypoint detection and matching problem between the hybrid scenario of a
fisheye and a projective image. We build on a state-of-the-art approach and
derive a self-supervised procedure that enables training an interest point
detector and descriptor network. We also collected two new datasets for
additional training and testing in this unexplored scenario, and we demonstrate
that current approaches are suboptimal because they are designed to work in
traditional projective conditions, while the proposed approach turns out to be
the most effective.
Related papers
- Design and Identification of Keypoint Patches in Unstructured Environments [7.940068522906917]
Keypoint identification in an image allows direct mapping from raw images to 2D coordinates.
We propose four simple yet distinct designs that consider various scale, rotation and camera projection.
We customize the Superpoint network to ensure robust detection under various types of image degradation.
arXiv Detail & Related papers (2024-10-01T09:05:50Z) - FriendNet: Detection-Friendly Dehazing Network [24.372610892854283]
We propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning.
FriendNet aims to deliver both high-quality perception and high detection capacity.
arXiv Detail & Related papers (2024-03-07T12:19:04Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously.
Deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential.
arXiv Detail & Related papers (2023-02-17T14:19:28Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - Deep Image Deblurring: A Survey [165.32391279761006]
Deblurring is a classic problem in low-level computer vision, which aims to recover a sharp image from a blurred input image.
Recent advances in deep learning have led to significant progress in solving this problem.
arXiv Detail & Related papers (2022-01-26T01:31:30Z) - Geometry-aware data augmentation for monocular 3D object detection [18.67567745336633]
This paper focuses on monocular 3D object detection, one of the essential modules in autonomous driving systems.
A key challenge is that the depth recovery problem is ill-posed in monocular data.
We conduct a thorough analysis to reveal how existing methods fail to robustly estimate depth when different geometry shifts occur.
We convert the aforementioned manipulations into four corresponding 3D-aware data augmentation techniques.
arXiv Detail & Related papers (2021-04-12T23:12:48Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
Motion blur in an image may have practical interests in fundamental computer vision problems.
We propose a novel framework to estimate optical flow from a single motion-blurred image in an end-to-end manner.
arXiv Detail & Related papers (2021-03-04T12:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.