GERA: Geometric Embedding for Efficient Point Registration Analysis
- URL: http://arxiv.org/abs/2410.00589v1
- Date: Tue, 1 Oct 2024 11:19:56 GMT
- Title: GERA: Geometric Embedding for Efficient Point Registration Analysis
- Authors: Geng Li, Haozhi Cao, Mingyang Liu, Shenghai Yuan, Jianfei Yang,
- Abstract summary: We propose a novel point cloud registration network that leverages a pure geometric architecture, constructing geometric information offline.
Our method is the first to replace 3D coordinate inputs with offline-constructed geometric encoding, improving generalization and stability.
- Score: 20.690695788384517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud registration aims to provide estimated transformations to align point clouds, which plays a crucial role in pose estimation of various navigation systems, such as surgical guidance systems and autonomous vehicles. Despite the impressive performance of recent models on benchmark datasets, many rely on complex modules like KPConv and Transformers, which impose significant computational and memory demands. These requirements hinder their practical application, particularly in resource-constrained environments such as mobile robotics. In this paper, we propose a novel point cloud registration network that leverages a pure MLP architecture, constructing geometric information offline. This approach eliminates the computational and memory burdens associated with traditional complex feature extractors and significantly reduces inference time and resource consumption. Our method is the first to replace 3D coordinate inputs with offline-constructed geometric encoding, improving generalization and stability, as demonstrated by Maximum Mean Discrepancy (MMD) comparisons. This efficient and accurate geometric representation marks a significant advancement in point cloud analysis, particularly for applications requiring fast and reliability.
Related papers
- PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
This study tackles the quadratic complexity of the self-attention mechanism by introducing a complexity local attention mechanism for effective feature aggregation.
We also introduce a parameter-free channel temperature adaptation mechanism that adaptively adjusts the attention weight distribution in each channel.
We show that PointMT achieves performance comparable to state-of-the-art methods while maintaining an optimal balance between performance and accuracy.
arXiv Detail & Related papers (2024-08-10T10:16:03Z) - PointRWKV: Efficient RWKV-Like Model for Hierarchical Point Cloud Learning [56.14518823931901]
We present PointRWKV, a model of linear complexity derived from the RWKV model in the NLP field.
We first propose to explore the global processing capabilities within PointRWKV blocks using modified multi-headed matrix-valued states.
To extract local geometric features simultaneously, we design a parallel branch to encode the point cloud efficiently in a fixed radius near-neighbors graph with a graph stabilizer.
arXiv Detail & Related papers (2024-05-24T05:02:51Z) - MEDPNet: Achieving High-Precision Adaptive Registration for Complex Die Castings [10.504847830252254]
This paper proposes a high-precision adaptive registration method called Multiscale Efficient Deep Closest Point (MEDPNet)
The MEDPNet method performs coarse die-casting point cloud data registration using the Efficient-DCP method, followed by precision registration using the Multiscale feature fusion dual-channel registration (MDR) method.
Our proposed method demonstrates excellent performance compared to state-of-the-art geometric and learning-based registration methods when applied to complex die-casting point cloud data.
arXiv Detail & Related papers (2024-03-15T03:42:38Z) - Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) is a standard PT model augmented by an adaptive token selection mechanism.
AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds.
arXiv Detail & Related papers (2024-01-26T13:24:45Z) - PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNet is a network designed specifically for point cloud analysis.
Our method demonstrates flexibility by seamlessly integrating with a classification/segmentation head or embedding into off-the-shelf 3D object detection networks.
Experiments on object-level datasets, including ModelNet40, ScanObjectNN, ShapeNet KITTI, and the scene-level dataset KITTI, demonstrate the superior performance of PointeNet over state-of-the-art methods in point cloud analysis.
arXiv Detail & Related papers (2023-12-20T03:34:48Z) - GAFAR: Graph-Attention Feature-Augmentation for Registration A Fast and
Light-weight Point Set Registration Algorithm [12.592563880121816]
rigid registration of point clouds is a fundamental problem in computer vision.
Deep learning in computer vision has brought new drive to research on this topic.
We present a novel fast and light-weight network architecture using the attention mechanism to augment point descriptors.
arXiv Detail & Related papers (2023-07-05T14:50:36Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion.
Our method attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI.
arXiv Detail & Related papers (2023-01-11T16:14:12Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We also design a new model, called PoinTr, that adopts a transformer encoder-decoder architecture for point cloud completion.
Our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones.
arXiv Detail & Related papers (2021-08-19T17:58:56Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z) - IMU Preintegrated Features for Efficient Deep Inertial Odometry [0.0]
Inertial measurement units (IMUs) as ubiquitous proprioceptive motion measurement devices are available on various gadgets and robotic platforms.
Direct inference of geometrical transformations or odometry based on these data alone is a challenging task.
This paper proposes the IMU preintegrated features as a replacement for the raw IMU data in deep inertial odometry.
arXiv Detail & Related papers (2020-07-06T17:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.