Cafca: High-quality Novel View Synthesis of Expressive Faces from Casual Few-shot Captures
- URL: http://arxiv.org/abs/2410.00630v1
- Date: Tue, 1 Oct 2024 12:24:50 GMT
- Title: Cafca: High-quality Novel View Synthesis of Expressive Faces from Casual Few-shot Captures
- Authors: Marcel C. Bühler, Gengyan Li, Erroll Wood, Leonhard Helminger, Xu Chen, Tanmay Shah, Daoye Wang, Stephan Garbin, Sergio Orts-Escolano, Otmar Hilliges, Dmitry Lagun, Jérémy Riviere, Paulo Gotardo, Thabo Beeler, Abhimitra Meka, Kripasindhu Sarkar,
- Abstract summary: We present a novel volumetric prior on human faces that allows for high-fidelity expressive face modeling.
We leverage a 3D Morphable Face Model to synthesize a large training set, rendering each identity with different expressions.
We then train a conditional Neural Radiance Field prior on this synthetic dataset and, at inference time, fine-tune the model on a very sparse set of real images of a single subject.
- Score: 33.463245327698
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Volumetric modeling and neural radiance field representations have revolutionized 3D face capture and photorealistic novel view synthesis. However, these methods often require hundreds of multi-view input images and are thus inapplicable to cases with less than a handful of inputs. We present a novel volumetric prior on human faces that allows for high-fidelity expressive face modeling from as few as three input views captured in the wild. Our key insight is that an implicit prior trained on synthetic data alone can generalize to extremely challenging real-world identities and expressions and render novel views with fine idiosyncratic details like wrinkles and eyelashes. We leverage a 3D Morphable Face Model to synthesize a large training set, rendering each identity with different expressions, hair, clothing, and other assets. We then train a conditional Neural Radiance Field prior on this synthetic dataset and, at inference time, fine-tune the model on a very sparse set of real images of a single subject. On average, the fine-tuning requires only three inputs to cross the synthetic-to-real domain gap. The resulting personalized 3D model reconstructs strong idiosyncratic facial expressions and outperforms the state-of-the-art in high-quality novel view synthesis of faces from sparse inputs in terms of perceptual and photo-metric quality.
Related papers
- Single Image, Any Face: Generalisable 3D Face Generation [59.9369171926757]
We propose a novel model, Gen3D-Face, which generates 3D human faces with unconstrained single image input.
To the best of our knowledge, this is the first attempt and benchmark for creating photorealistic 3D human face avatars from single images.
arXiv Detail & Related papers (2024-09-25T14:56:37Z) - InceptionHuman: Controllable Prompt-to-NeRF for Photorealistic 3D Human Generation [61.62346472443454]
InceptionHuman is a prompt-to-NeRF framework that allows easy control via a combination of prompts in different modalities to generate photorealistic 3D humans.
InceptionHuman achieves consistent 3D human generation within a progressively refined NeRF space.
arXiv Detail & Related papers (2023-11-27T15:49:41Z) - Single-Image 3D Human Digitization with Shape-Guided Diffusion [31.99621159464388]
NeRF and its variants typically require videos or images from different viewpoints.
We present an approach to generate a 360-degree view of a person with a consistent, high-resolution appearance from a single input image.
arXiv Detail & Related papers (2023-11-15T18:59:56Z) - Preface: A Data-driven Volumetric Prior for Few-shot Ultra
High-resolution Face Synthesis [0.0]
NeRFs have enabled highly realistic synthesis of human faces including complex appearance and reflectance effects of hair and skin.
We propose a novel human face prior that enables the synthesis of ultra high-resolution novel views of subjects that are not part of the prior's training distribution.
arXiv Detail & Related papers (2023-09-28T21:21:44Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field.
We show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.
arXiv Detail & Related papers (2022-09-15T15:28:45Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z) - MPS-NeRF: Generalizable 3D Human Rendering from Multiview Images [32.84481902544513]
This paper deals with rendering novel views and novel poses for a person unseen in training, using only multiview images as input.
Key ingredient is a dedicated representation combining a canonical NeRF and a volume deformation scheme.
Experiments on both real and synthetic data with the novel view synthesis and pose animation tasks collectively demonstrate the efficacy of our method.
arXiv Detail & Related papers (2022-03-31T08:09:03Z) - Human View Synthesis using a Single Sparse RGB-D Input [16.764379184593256]
We present a novel view synthesis framework to generate realistic renders from unseen views of any human captured from a single-view sensor with sparse RGB-D.
An enhancer network leverages the overall fidelity, even in occluded areas from the original view, producing crisp renders with fine details.
arXiv Detail & Related papers (2021-12-27T20:13:53Z) - Neural Actor: Neural Free-view Synthesis of Human Actors with Pose
Control [80.79820002330457]
We propose a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses.
Our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses.
arXiv Detail & Related papers (2021-06-03T17:40:48Z) - Neural Body: Implicit Neural Representations with Structured Latent
Codes for Novel View Synthesis of Dynamic Humans [56.63912568777483]
This paper addresses the challenge of novel view synthesis for a human performer from a very sparse set of camera views.
We propose Neural Body, a new human body representation which assumes that the learned neural representations at different frames share the same set of latent codes anchored to a deformable mesh.
Experiments on ZJU-MoCap show that our approach outperforms prior works by a large margin in terms of novel view synthesis quality.
arXiv Detail & Related papers (2020-12-31T18:55:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.