Uncovering the Viral Nature of Toxicity in Competitive Online Video Games
- URL: http://arxiv.org/abs/2410.00978v1
- Date: Tue, 1 Oct 2024 18:07:06 GMT
- Title: Uncovering the Viral Nature of Toxicity in Competitive Online Video Games
- Authors: Jacob Morrier, Amine Mahmassani, R. Michael Alvarez,
- Abstract summary: We analyze proprietary data from the free-to-play first-person action game Call of Duty: Warzone.
All of a player's teammates engaging in toxic speech increases their probability of engaging in similar behavior by 26.1 to 30.3 times the average player's likelihood of engaging in toxic speech.
- Score: 0.4681661603096334
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Toxicity is a widespread phenomenon in competitive online video games. In addition to its direct undesirable effects, there is a concern that toxicity can spread to others, amplifying the harm caused by a single player's misbehavior. In this study, we estimate whether and to what extent a player's toxic speech spreads, causing their teammates to behave similarly. To this end, we analyze proprietary data from the free-to-play first-person action game Call of Duty: Warzone. We formulate and implement an instrumental variable identification strategy that leverages the network of interactions among players across matches. Our analysis reveals that all else equal, all of a player's teammates engaging in toxic speech increases their probability of engaging in similar behavior by 26.1 to 30.3 times the average player's likelihood of engaging in toxic speech. These findings confirm the viral nature of toxicity, especially toxic speech, in competitive online video games.
Related papers
- Challenges for Real-Time Toxicity Detection in Online Games [1.2289361708127877]
Toxic behaviour and malicious players can ruin the experience, reduce the player base and potentially harm the success of the game and the studio.
This article will give a brief overview of the challenges faced in toxic content detection in terms of text, audio and image processing problems, and behavioural toxicity.
arXiv Detail & Related papers (2024-07-05T09:38:58Z) - Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - Comprehensive Assessment of Toxicity in ChatGPT [49.71090497696024]
We evaluate the toxicity in ChatGPT by utilizing instruction-tuning datasets.
prompts in creative writing tasks can be 2x more likely to elicit toxic responses.
Certain deliberately toxic prompts, designed in earlier studies, no longer yield harmful responses.
arXiv Detail & Related papers (2023-11-03T14:37:53Z) - User Engagement and the Toxicity of Tweets [1.1339580074756188]
We analyze a random sample of more than 85,300 Twitter conversations to examine differences between toxic and non-toxic conversations.
We find that toxic conversations, those with at least one toxic tweet, are longer but have fewer individual users contributing to the dialogue compared to the non-toxic conversations.
We also find a relationship between the toxicity of the first reply to a toxic tweet and the toxicity of the conversation.
arXiv Detail & Related papers (2022-11-07T20:55:22Z) - Twitter Users' Behavioral Response to Toxic Replies [1.2387676601792899]
We studied the impact of toxicity on users' online behavior on Twitter.
We found that toxicity victims show a combination of the following behavioral reactions: avoidance, revenge, countermeasures, and negotiation.
Our results can assist further studies in developing more effective detection and intervention methods for reducing the negative consequences of toxicity on social media.
arXiv Detail & Related papers (2022-10-24T17:36:58Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This work proposes a novel reinforcement learning mechanism based on the social impact of rivalry behavior.
Our proposed model aggregates objective and social perception mechanisms to derive a rivalry score that is used to modulate the learning of artificial agents.
arXiv Detail & Related papers (2022-08-22T14:06:06Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
We investigate the effect of annotator identities (who) and beliefs (why) on toxic language annotations.
We consider posts with three characteristics: anti-Black language, African American English dialect, and vulgarity.
Our results show strong associations between annotator identity and beliefs and their ratings of toxicity.
arXiv Detail & Related papers (2021-11-15T18:58:20Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z) - ALONE: A Dataset for Toxic Behavior among Adolescents on Twitter [5.723363140737726]
This paper provides a dataset of toxic social media interactions between confirmed high school students, called ALONE (AdoLescents ON twittEr)
Nearly 66% of internet users have observed online harassment, and 41% claim personal experience, with 18% facing severe forms of online harassment.
Our observations show that individual tweets do not provide sufficient evidence for toxic behavior, and meaningful use of context in interactions can enable highlighting or exonerating tweets with purported toxicity.
arXiv Detail & Related papers (2020-08-14T17:02:55Z) - Cheating in online gaming spreads through observation and victimization [2.7739004171676904]
We study the spread of cheating in more than a million matches of an online multiplayer first-person shooter game.
We find that social contagion is only likely to exist for those who both observe and experience cheating.
arXiv Detail & Related papers (2020-03-24T22:38:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.