Can visual language models resolve textual ambiguity with visual cues? Let visual puns tell you!
- URL: http://arxiv.org/abs/2410.01023v2
- Date: Wed, 23 Oct 2024 02:55:20 GMT
- Title: Can visual language models resolve textual ambiguity with visual cues? Let visual puns tell you!
- Authors: Jiwan Chung, Seungwon Lim, Jaehyun Jeon, Seungbeen Lee, Youngjae Yu,
- Abstract summary: We present UNPIE, a novel benchmark designed to assess the impact of multimodal inputs in resolving lexical ambiguities.
Our dataset includes 1,000 puns, each accompanied by an image that explains both meanings.
The results indicate that various Socratic Models and Visual-Language Models improve over the text-only models when given visual context.
- Score: 14.84123301554462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans possess multimodal literacy, allowing them to actively integrate information from various modalities to form reasoning. Faced with challenges like lexical ambiguity in text, we supplement this with other modalities, such as thumbnail images or textbook illustrations. Is it possible for machines to achieve a similar multimodal understanding capability? In response, we present Understanding Pun with Image Explanations (UNPIE), a novel benchmark designed to assess the impact of multimodal inputs in resolving lexical ambiguities. Puns serve as the ideal subject for this evaluation due to their intrinsic ambiguity. Our dataset includes 1,000 puns, each accompanied by an image that explains both meanings. We pose three multimodal challenges with the annotations to assess different aspects of multimodal literacy; Pun Grounding, Disambiguation, and Reconstruction. The results indicate that various Socratic Models and Visual-Language Models improve over the text-only models when given visual context, particularly as the complexity of the tasks increases.
Related papers
- Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models [40.41276154014666]
We present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge.
The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models.
Human evaluation reveals that existing models lag significantly behind human performance, which is at 82% accuracy, with Gemini-Pro-1.5 leading with 40% accuracy.
arXiv Detail & Related papers (2024-07-28T11:56:03Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
We introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images.
We conduct experiments to assess the performance of 14 foundation models and establish a human performance baseline.
We observe a significant performance gap of 30.8% between GPT-4V and human performance.
arXiv Detail & Related papers (2024-01-24T09:07:11Z) - IRFL: Image Recognition of Figurative Language [20.472997304393413]
Figurative forms are often conveyed through multiple modalities (e.g., both text and images)
We develop the Image Recognition of Figurative Language dataset.
We introduce two novel tasks as a benchmark for multimodal figurative language understanding.
arXiv Detail & Related papers (2023-03-27T17:59:55Z) - Language Is Not All You Need: Aligning Perception with Language Models [110.51362453720458]
We introduce Kosmos-1, a Multimodal Large Language Model (MLLM) that can perceive general modalities, learn in context, and follow instructions.
We train Kosmos-1 from scratch on web-scale multimodal corpora, including arbitrarily interleaved text and images, image-caption pairs, and text data.
Experimental results show that Kosmos-1 achieves impressive performance on (i) language understanding, generation, and even OCR-free NLP.
We also show that MLLMs can benefit from cross-modal transfer, i.e., transfer knowledge from language to multimodal, and from multimodal to language
arXiv Detail & Related papers (2023-02-27T18:55:27Z) - Human Evaluation of Text-to-Image Models on a Multi-Task Benchmark [80.79082788458602]
We provide a new multi-task benchmark for evaluating text-to-image models.
We compare the most common open-source (Stable Diffusion) and commercial (DALL-E 2) models.
Twenty computer science AI graduate students evaluated the two models, on three tasks, at three difficulty levels, across ten prompts each.
arXiv Detail & Related papers (2022-11-22T09:27:53Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - A Picture May Be Worth a Hundred Words for Visual Question Answering [26.83504716672634]
In image understanding, it is essential to use concise but detailed image representations.
Deep visual features extracted by vision models, such as Faster R-CNN, are prevailing used in multiple tasks.
We propose to take description-question pairs as input, instead of deep visual features, and fed them into a language-only Transformer model.
arXiv Detail & Related papers (2021-06-25T06:13:14Z) - Probing Contextual Language Models for Common Ground with Visual
Representations [76.05769268286038]
We design a probing model that evaluates how effective are text-only representations in distinguishing between matching and non-matching visual representations.
Our findings show that language representations alone provide a strong signal for retrieving image patches from the correct object categories.
Visually grounded language models slightly outperform text-only language models in instance retrieval, but greatly under-perform humans.
arXiv Detail & Related papers (2020-05-01T21:28:28Z) - Multi-Modal Graph Neural Network for Joint Reasoning on Vision and Scene
Text [93.08109196909763]
We propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN)
It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively.
It then introduces three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities.
arXiv Detail & Related papers (2020-03-31T05:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.