VAGUE: Visual Contexts Clarify Ambiguous Expressions
- URL: http://arxiv.org/abs/2411.14137v2
- Date: Tue, 11 Mar 2025 13:29:47 GMT
- Title: VAGUE: Visual Contexts Clarify Ambiguous Expressions
- Authors: Heejeong Nam, Jinwoo Ahn, Keummin Ka, Jiwan Chung, Youngjae Yu,
- Abstract summary: We introduce VAGUE, a benchmark evaluating multimodal AI systems' ability to integrate visual context for intent.<n>VAGUE consists of 1.6K ambiguous textual expressions, each paired with an image and multiple-choice interpretations.<n>Our experiments reveal that existing multimodal AI models struggle to infer the speaker's true intent.
- Score: 15.140825578254324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human communication often relies on visual cues to resolve ambiguity. While humans can intuitively integrate these cues, AI systems often find it challenging to engage in sophisticated multimodal reasoning. We introduce VAGUE, a benchmark evaluating multimodal AI systems' ability to integrate visual context for intent disambiguation. VAGUE consists of 1.6K ambiguous textual expressions, each paired with an image and multiple-choice interpretations, where the correct answer is only apparent with visual context. The dataset spans both staged, complex (Visual Commonsense Reasoning) and natural, personal (Ego4D) scenes, ensuring diversity. Our experiments reveal that existing multimodal AI models struggle to infer the speaker's true intent. While performance consistently improves from the introduction of more visual cues, the overall accuracy remains far below human performance, highlighting a critical gap in multimodal reasoning. Analysis of failure cases demonstrates that current models fail to distinguish true intent from superficial correlations in the visual scene, indicating that they perceive images but do not effectively reason with them. We release our code and data at https://github.com/Hazel-Heejeong-Nam/VAGUE.git.
Related papers
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - Can visual language models resolve textual ambiguity with visual cues? Let visual puns tell you! [14.84123301554462]
We present UNPIE, a novel benchmark designed to assess the impact of multimodal inputs in resolving lexical ambiguities.
Our dataset includes 1,000 puns, each accompanied by an image that explains both meanings.
The results indicate that various Socratic Models and Visual-Language Models improve over the text-only models when given visual context.
arXiv Detail & Related papers (2024-10-01T19:32:57Z) - Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models [37.44286562901589]
We propose SpatialEval, a novel benchmark that covers diverse aspects of spatial reasoning.
We conduct a comprehensive evaluation of competitive language and vision-language models.
Our findings reveal several counter-intuitive insights that have been overlooked in the literature.
arXiv Detail & Related papers (2024-06-21T03:53:37Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - ViGoR: Improving Visual Grounding of Large Vision Language Models with Fine-Grained Reward Modeling [35.098725056881655]
Large vision language models (LVLMs) have shown unprecedented visual reasoning capabilities.
The generated text often suffers from inaccurate grounding in the visual input, resulting in errors such as hallucination of nonexistent scene elements.
We introduce a novel framework, ViGoR, that utilizes fine-grained reward modeling to significantly enhance the visual grounding of LVLMs over pre-trained baselines.
arXiv Detail & Related papers (2024-02-09T01:00:14Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
We introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images.
We conduct experiments to assess the performance of 14 foundation models and establish a human performance baseline.
We observe a significant performance gap of 30.8% between GPT-4V and human performance.
arXiv Detail & Related papers (2024-01-24T09:07:11Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension.
But to achieve these results, LMs must be trained in distinctly un-human-like ways.
Do models trained more naturalistically -- with grounded supervision -- exhibit more humanlike language learning?
We investigate this question in the context of word learning, a key sub-task in language acquisition.
arXiv Detail & Related papers (2023-10-20T03:33:36Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
arXiv Detail & Related papers (2023-08-31T06:53:55Z) - Revisiting the Role of Language Priors in Vision-Language Models [90.0317841097143]
Vision-language models (VLMs) are applied to a variety of visual understanding tasks in a zero-shot fashion, without any fine-tuning.
We study $textitgenerative VLMs$ that are trained for next-word generation given an image.
We explore their zero-shot performance on the illustrative task of image-text retrieval across 8 popular vision-language benchmarks.
arXiv Detail & Related papers (2023-06-02T19:19:43Z) - IRFL: Image Recognition of Figurative Language [20.472997304393413]
Figurative forms are often conveyed through multiple modalities (e.g., both text and images)
We develop the Image Recognition of Figurative Language dataset.
We introduce two novel tasks as a benchmark for multimodal figurative language understanding.
arXiv Detail & Related papers (2023-03-27T17:59:55Z) - Weakly-Supervised HOI Detection from Interaction Labels Only and
Language/Vision-Language Priors [36.75629570208193]
Human-object interaction (HOI) detection aims to extract interacting human-object pairs and their interaction categories from a given natural image.
In this paper, we tackle HOI detection with the weakest supervision setting in the literature, using only image-level interaction labels.
We first propose an approach to prune non-interacting human and object proposals to increase the quality of positive pairs within the bag, exploiting the grounding capability of the vision-language model.
Second, we use a large language model to query which interactions are possible between a human and a given object category, in order to force the model not to put emphasis
arXiv Detail & Related papers (2023-03-09T19:08:02Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
We propose embodied language models to incorporate real-world continuous sensor modalities into language models.
We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks.
Our largest model, PaLM-E-562B with 562B parameters, is a visual-language generalist with state-of-the-art performance on OK-VQA.
arXiv Detail & Related papers (2023-03-06T18:58:06Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
We conduct a comparative analysis of the visual representations in existing vision-and-language models and vision-only models.
Our empirical observations suggest that vision-and-language models are better at label prediction tasks.
We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models.
arXiv Detail & Related papers (2022-12-01T05:00:18Z) - Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense [98.70218717851665]
It is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources.
We present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge.
We then take a step further to show that training with the ME data boosts the model's performance in standard VCR evaluation.
arXiv Detail & Related papers (2022-11-10T21:44:33Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - From Two to One: A New Scene Text Recognizer with Visual Language
Modeling Network [70.47504933083218]
We propose a Visual Language Modeling Network (VisionLAN), which views the visual and linguistic information as a union.
VisionLAN significantly improves the speed by 39% and adaptively considers the linguistic information to enhance the visual features for accurate recognition.
arXiv Detail & Related papers (2021-08-22T07:56:24Z) - MERLOT: Multimodal Neural Script Knowledge Models [74.05631672657452]
We introduce MERLOT, a model that learns multimodal script knowledge by watching millions of YouTube videos with transcribed speech.
MERLOT exhibits strong out-of-the-box representations of temporal commonsense, and achieves state-of-the-art performance on 12 different video QA datasets.
On Visual Commonsense Reasoning, MERLOT answers questions correctly with 80.6% accuracy, outperforming state-of-the-art models of similar size by over 3%.
arXiv Detail & Related papers (2021-06-04T17:57:39Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
Recent Transformer-based large-scale pre-trained models have revolutionized vision-and-language (V+L) research.
We present VALUE, a set of meticulously designed probing tasks to decipher the inner workings of multimodal pre-training.
Key observations: Pre-trained models exhibit a propensity for attending over text rather than images during inference.
arXiv Detail & Related papers (2020-05-15T01:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.