論文の概要: Statistical inference on black-box generative models in the data kernel perspective space
- arxiv url: http://arxiv.org/abs/2410.01106v3
- Date: Thu, 22 May 2025 14:47:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:20.634284
- Title: Statistical inference on black-box generative models in the data kernel perspective space
- Title(参考訳): データカーネルパースペクティブ空間におけるブラックボックス生成モデルに関する統計的推測
- Authors: Hayden Helm, Aranyak Acharyya, Brandon Duderstadt, Youngser Park, Carey E. Priebe,
- Abstract要約: ブラックボックス生成モデルの表現結果をモデルレベルの統計的推論タスクに拡張する。
モデルレベルの表現は複数の推論タスクに有効であることを示す。
- 参考スコア(独自算出の注目度): 10.948308354932639
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models are capable of producing human-expert level content across a variety of topics and domains. As the impact of generative models grows, it is necessary to develop statistical methods to understand collections of available models. These methods are particularly important in settings where the user may not have access to information related to a model's pre-training data, weights, or other relevant model-level covariates. In this paper we extend recent results on representations of black-box generative models to model-level statistical inference tasks. We demonstrate that the model-level representations are effective for multiple inference tasks.
- Abstract(参考訳): 生成モデルは、さまざまなトピックやドメインにまたがって、人間の専門レベルのコンテンツを生成することができる。
生成モデルの影響が増大するにつれて、利用可能なモデルの集合を理解するための統計的手法を開発する必要がある。
これらの手法は、ユーザーがモデルの事前学習データ、重み、その他の関連するモデルレベルの共変量に関連する情報にアクセスできないような設定において特に重要である。
本稿では,ブラックボックス生成モデルの表現に関する最近の結果を,モデルレベルの統計的推論タスクに拡張する。
モデルレベルの表現は複数の推論タスクに有効であることを示す。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
本稿では,大規模言語モデル間の類似性や関連性の程度であるモデル親和性を紹介する。
モデル統合後の性能向上とモデル親和性の間には,一定の関係があることが判明した。
我々は新しいモデルマージ戦略を提案する。Top-k Greedy Merging with Model Kinship。
論文 参考訳(メタデータ) (2024-10-16T14:29:29Z) - Consistent estimation of generative model representations in the data kernel perspective space [11.990746437073694]
大規模言語モデルやテキストから画像への拡散モデルのような生成モデルは、クエリを提示すると関連する情報を生成する。
同じクエリを表示すると、異なるモデルが異なる情報を生成する可能性がある。
本稿では,一組のクエリのコンテキストにおける生成モデルの埋め込みに基づく表現に関する新しい理論的結果を示す。
論文 参考訳(メタデータ) (2024-09-25T19:35:58Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
我々は、最先端の学習ベースアプローチの2つのタイプを広範かつ包括的に調査する。
本稿では,シーケンスベースモデルの優先度と,グラフベースモデルの限定能力について実験的に検証する。
論文 参考訳(メタデータ) (2024-08-14T13:01:30Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Knowledge Fusion By Evolving Weights of Language Models [5.354527640064584]
本稿では,複数のモデルを統一モデルに統合するアプローチについて検討する。
本稿では進化的アルゴリズムに触発されたEvolverという知識融合手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T02:12:34Z) - Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
マルコフ確率場を符号化する確率的グラフィカルモデルは、生成的モデリングの基本的な構成要素である。
本稿では,これらのモデルの全確率に基づく解析が,計算効率のよい方法で実現可能であることを示す。
論文 参考訳(メタデータ) (2024-04-27T02:58:22Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
本稿では,高次元表現器と呼ぶサンプルベース説明のクラスを紹介する。
私たちのワークホースは、一般化された高次元モデルに対する新しい代表者定理である。
提案手法の実証的性能について,実世界の2進分類データセットと2つの推薦システムデータセットを用いて検討した。
論文 参考訳(メタデータ) (2023-05-31T16:23:58Z) - Comparing Foundation Models using Data Kernels [13.099029073152257]
基礎モデルの埋め込み空間幾何学を直接比較するための方法論を提案する。
提案手法はランダムグラフ理論に基づいており, 埋め込み類似性の有効な仮説検証を可能にする。
本稿では, 距離関数を付加したモデルの多様体が, 下流の指標と強く相関することを示す。
論文 参考訳(メタデータ) (2023-05-09T02:01:07Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - An Ample Approach to Data and Modeling [1.0152838128195467]
さまざまな分野の概念とメソッドを統合するモデルの構築方法をモデル化するためのフレームワークについて説明する。
参照M*メタモデルフレームワークは、厳密な同値関係の観点からデータセットと各モデルの関連付けに批判的に依存する。
開発されたフレームワークがデータクラスタリング、複雑性、共同研究、ディープラーニング、クリエイティビティに関する洞察を提供する方法について、いくつかの考察がなされている。
論文 参考訳(メタデータ) (2021-10-05T01:26:09Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Design of Dynamic Experiments for Black-Box Model Discrimination [72.2414939419588]
選択したいような動的モデル判別の設定を考えてみましょう。 (i) 最高のメカニスティックな時間変化モデルと (ii) 最高のモデルパラメータ推定値です。
勾配情報にアクセス可能な競合する力学モデルに対しては、既存の手法を拡張し、より広い範囲の問題の不確実性を組み込む。
これらのブラックボックスモデルをガウス過程サロゲートモデルに置き換えることで、モデル識別設定を拡張して、競合するブラックボックスモデルをさらに取り入れる。
論文 参考訳(メタデータ) (2021-02-07T11:34:39Z) - Conditional Generative Models for Counterfactual Explanations [0.0]
本稿では,分散的非分布的モデル記述を生成する汎用フレームワークを提案する。
このフレームワークは、使用される生成モデルの種類や基礎となる予測モデルのタスクに関して柔軟である。
論文 参考訳(メタデータ) (2021-01-25T14:31:13Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。