Synthetic imagery for fuzzy object detection: A comparative study
- URL: http://arxiv.org/abs/2410.01124v1
- Date: Tue, 1 Oct 2024 23:22:54 GMT
- Title: Synthetic imagery for fuzzy object detection: A comparative study
- Authors: Siavash H. Khajavi, Mehdi Moshtaghi, Dikai Yu, Zixuan Liu, Kary Främling, Jan Holmström,
- Abstract summary: Fuzzy object detection is a challenging field of research in computer vision (CV)
Fuzzy objects such as fire, smoke, mist, and steam present significantly greater complexities in terms of visual features.
We propose and leverage an alternative method of generating and automatically annotating fully synthetic fire images.
- Score: 3.652647451754697
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The fuzzy object detection is a challenging field of research in computer vision (CV). Distinguishing between fuzzy and non-fuzzy object detection in CV is important. Fuzzy objects such as fire, smoke, mist, and steam present significantly greater complexities in terms of visual features, blurred edges, varying shapes, opacity, and volume compared to non-fuzzy objects such as trees and cars. Collection of a balanced and diverse dataset and accurate annotation is crucial to achieve better ML models for fuzzy objects, however, the task of collection and annotation is still highly manual. In this research, we propose and leverage an alternative method of generating and automatically annotating fully synthetic fire images based on 3D models for training an object detection model. Moreover, the performance, and efficiency of the trained ML models on synthetic images is compared with ML models trained on real imagery and mixed imagery. Findings proved the effectiveness of the synthetic data for fire detection, while the performance improves as the test dataset covers a broader spectrum of real fires. Our findings illustrates that when synthetic imagery and real imagery is utilized in a mixed training set the resulting ML model outperforms models trained on real imagery as well as models trained on synthetic imagery for detection of a broad spectrum of fires. The proposed method for automating the annotation of synthetic fuzzy objects imagery carries substantial implications for reducing both time and cost in creating computer vision models specifically tailored for detecting fuzzy objects.
Related papers
- Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
This paper consolidates a set of good practices to finetune large pretrained models for a real-world task.
Specifically, we develop several strategies to account for discrepancies between the synthetic data and real driving data.
Our insights lead to effective finetuning that results in a $68.8%$ reduction in FID for novel view synthesis over prior arts.
arXiv Detail & Related papers (2024-12-19T03:39:13Z) - MaskTerial: A Foundation Model for Automated 2D Material Flake Detection [48.73213960205105]
We present a deep learning model, called MaskTerial, that uses an instance segmentation network to reliably identify 2D material flakes.
The model is extensively pre-trained using a synthetic data generator, that generates realistic microscopy images from unlabeled data.
We demonstrate significant improvements over existing techniques in the detection of low-contrast materials such as hexagonal boron nitride.
arXiv Detail & Related papers (2024-12-12T15:01:39Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - SynFog: A Photo-realistic Synthetic Fog Dataset based on End-to-end Imaging Simulation for Advancing Real-World Defogging in Autonomous Driving [48.27575423606407]
We introduce an end-to-end simulation pipeline designed to generate photo-realistic foggy images.
We present a new synthetic fog dataset named SynFog, which features both sky light and active lighting conditions.
Experimental results demonstrate that models trained on SynFog exhibit superior performance in visual perception and detection accuracy.
arXiv Detail & Related papers (2024-03-25T18:32:41Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - On the Robustness of Object Detection Models on Aerial Images [38.91734128770737]
We introduce two novel benchmarks based on DOTA-v1.0.
The first benchmark encompasses 19 prevalent corruptions, while the second focuses on the cloud-corrupted condition.
We find that rotation-invariant modeling and enhanced backbone architectures can improve the robustness of models.
arXiv Detail & Related papers (2023-08-29T15:16:51Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Validation of object detection in UAV-based images using synthetic data [9.189702268557483]
Machine learning (ML) models for UAV-based detection are often validated using data curated for tasks unrelated to the UAV application.
Such errors arise due to differences in imaging conditions between images from UAVs and images in training.
Our work is focused on understanding the impact of different UAV-based imaging conditions on detection performance by using synthetic data generated using a game engine.
arXiv Detail & Related papers (2022-01-17T20:56:56Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.