SynFog: A Photo-realistic Synthetic Fog Dataset based on End-to-end Imaging Simulation for Advancing Real-World Defogging in Autonomous Driving
- URL: http://arxiv.org/abs/2403.17094v1
- Date: Mon, 25 Mar 2024 18:32:41 GMT
- Title: SynFog: A Photo-realistic Synthetic Fog Dataset based on End-to-end Imaging Simulation for Advancing Real-World Defogging in Autonomous Driving
- Authors: Yiming Xie, Henglu Wei, Zhenyi Liu, Xiaoyu Wang, Xiangyang Ji,
- Abstract summary: We introduce an end-to-end simulation pipeline designed to generate photo-realistic foggy images.
We present a new synthetic fog dataset named SynFog, which features both sky light and active lighting conditions.
Experimental results demonstrate that models trained on SynFog exhibit superior performance in visual perception and detection accuracy.
- Score: 48.27575423606407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To advance research in learning-based defogging algorithms, various synthetic fog datasets have been developed. However, existing datasets created using the Atmospheric Scattering Model (ASM) or real-time rendering engines often struggle to produce photo-realistic foggy images that accurately mimic the actual imaging process. This limitation hinders the effective generalization of models from synthetic to real data. In this paper, we introduce an end-to-end simulation pipeline designed to generate photo-realistic foggy images. This pipeline comprehensively considers the entire physically-based foggy scene imaging process, closely aligning with real-world image capture methods. Based on this pipeline, we present a new synthetic fog dataset named SynFog, which features both sky light and active lighting conditions, as well as three levels of fog density. Experimental results demonstrate that models trained on SynFog exhibit superior performance in visual perception and detection accuracy compared to others when applied to real-world foggy images.
Related papers
- Synthetic imagery for fuzzy object detection: A comparative study [3.652647451754697]
Fuzzy object detection is a challenging field of research in computer vision (CV)
Fuzzy objects such as fire, smoke, mist, and steam present significantly greater complexities in terms of visual features.
We propose and leverage an alternative method of generating and automatically annotating fully synthetic fire images.
arXiv Detail & Related papers (2024-10-01T23:22:54Z) - MPI-Flow: Learning Realistic Optical Flow with Multiplane Images [18.310665144874775]
We investigate generating realistic optical flow datasets from real-world images.
To generate highly realistic new images, we construct a layered depth representation, known as multiplane images (MPI), from single-view images.
To ensure the realism of motion, we present an independent object motion module that can separate the camera and dynamic object motion in MPI.
arXiv Detail & Related papers (2023-09-13T04:31:00Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Rethinking Blur Synthesis for Deep Real-World Image Deblurring [4.00114307523959]
We propose a novel realistic blur synthesis pipeline to simulate the camera imaging process.
We develop an effective deblurring model that captures non-local dependencies and local context in the feature domain simultaneously.
A comprehensive experiment on three real-world datasets shows that the proposed deblurring model performs better than state-of-the-art methods.
arXiv Detail & Related papers (2022-09-28T06:50:16Z) - Dual-Scale Single Image Dehazing Via Neural Augmentation [29.019279446792623]
A novel single image dehazing algorithm is introduced by combining model-based and data-driven approaches.
Results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
arXiv Detail & Related papers (2022-09-13T11:56:03Z) - A comparison of different atmospheric turbulence simulation methods for
image restoration [64.24948495708337]
Atmospheric turbulence deteriorates the quality of images captured by long-range imaging systems.
Various deep learning-based atmospheric turbulence mitigation methods have been proposed in the literature.
We systematically evaluate the effectiveness of various turbulence simulation methods on image restoration.
arXiv Detail & Related papers (2022-04-19T16:21:36Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Partially fake it till you make it: mixing real and fake thermal images
for improved object detection [29.13557322147509]
We show the performance of the proposed system in the context of object detection in thermal videos.
Our single-modality detector achieves state-of-the-art results on the FLIR ADAS dataset.
arXiv Detail & Related papers (2021-06-25T12:56:09Z) - Learning optical flow from still images [53.295332513139925]
We introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture.
We virtually move the camera in the reconstructed environment with known motion vectors and rotation angles.
When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data.
arXiv Detail & Related papers (2021-04-08T17:59:58Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.