論文の概要: ProxiMix: Enhancing Fairness with Proximity Samples in Subgroups
- arxiv url: http://arxiv.org/abs/2410.01145v1
- Date: Wed, 2 Oct 2024 00:47:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 23:00:28.025116
- Title: ProxiMix: Enhancing Fairness with Proximity Samples in Subgroups
- Title(参考訳): ProxiMix: サブグループにおける近接サンプルによるフェアネス向上
- Authors: Jingyu Hu, Jun Hong, Mengnan Du, Weiru Liu,
- Abstract要約: 線形ミックスアップのみを使用することで、バイアス軽減のためのデータ拡張テクニックは、データセットラベルにバイアスを保持することができる。
本稿では,既存の混合手法と新たなバイアス軽減アルゴリズムの両方を活用可能な,新しい前処理手法を提案する。
ProxiMixは、より公平なデータ拡張のために、ペアワイズと近接関係を保持します。
- 参考スコア(独自算出の注目度): 17.672299431705262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many bias mitigation methods have been developed for addressing fairness issues in machine learning. We found that using linear mixup alone, a data augmentation technique, for bias mitigation, can still retain biases present in dataset labels. Research presented in this paper aims to address this issue by proposing a novel pre-processing strategy in which both an existing mixup method and our new bias mitigation algorithm can be utilized to improve the generation of labels of augmented samples, which are proximity aware. Specifically, we proposed ProxiMix which keeps both pairwise and proximity relationships for fairer data augmentation. We conducted thorough experiments with three datasets, three ML models, and different hyperparameters settings. Our experimental results showed the effectiveness of ProxiMix from both fairness of predictions and fairness of recourse perspectives.
- Abstract(参考訳): 機械学習における公平性問題に対処するために、多くのバイアス緩和法が開発されている。
バイアス軽減のためのデータ拡張手法である線形ミックスアップのみを用いることで、データセットラベルに存在するバイアスを維持できることがわかった。
本稿では,既存の混合手法と新しいバイアス緩和アルゴリズムを併用して,近縁な拡張サンプルのラベル生成を改善する,新しい前処理戦略を提案する。
具体的には、より公平なデータ拡張のためのペアワイズと近接関係を維持するProxiMixを提案する。
3つのデータセット、3つのMLモデル、異なるハイパーパラメータ設定で徹底的な実験を行った。
実験結果から,予測の公平さと会話視点の公平さの両方から ProxiMix の有効性が示された。
関連論文リスト
- A Survey on Mixup Augmentations and Beyond [59.578288906956736]
選択したサンプルと対応するラベルを凸的に組み合わせた混合および関連データ混合手法が広く採用されている。
本調査では, 基礎混合法とその応用について概観する。
論文 参考訳(メタデータ) (2024-09-08T19:32:22Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
半/ライブラリベースのアンミックスのための新しい凸凸モデルを提案する。
スパース・アンミキシングの代替手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-01-23T10:07:41Z) - Tailoring Mixup to Data for Calibration [12.050401897136501]
Mixupはキャリブレーションと予測の不確実性を改善する技術である。
この研究では、データ間の距離が混合されるにつれて、多様体の侵入の可能性が増加することを論じる。
本研究では, 混合する試料間の類似度に応じて, 係数の基底分布を動的に変化させることを提案する。
論文 参考訳(メタデータ) (2023-11-02T17:48:28Z) - AMPLIFY:Attention-based Mixup for Performance Improvement and Label Smoothing in Transformer [2.3072402651280517]
AMPLIFYはTransformer自体のアテンション機構を使用して、元のサンプルのノイズや異常値が予測結果に与える影響を低減する。
実験の結果,AMPLIFYは計算資源のコストが小さく,テキスト分類作業において他の混合手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-22T08:02:45Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Mixture of von Mises-Fisher distribution with sparse prototypes [0.0]
von Mises-Fisher分布の混合は、単位超球面上のデータをクラスタリングするのに使うことができる。
本稿では,l1のペナル化確率を用いてフォン・ミーゼス混合物を推定する。
論文 参考訳(メタデータ) (2022-12-30T08:00:38Z) - DoubleMix: Simple Interpolation-Based Data Augmentation for Text
Classification [56.817386699291305]
本稿では,DoubleMixと呼ばれる単純なデータ拡張手法を提案する。
DoubleMixはまず、トレーニングデータごとにいくつかの摂動サンプルを生成する。
次に、摂動データと元のデータを使って、隠れたニューラルネットワークの空間で2段階のステップを実行する。
論文 参考訳(メタデータ) (2022-09-12T15:01:04Z) - Harnessing Hard Mixed Samples with Decoupled Regularizer [69.98746081734441]
Mixupは、決定境界を混合データで滑らかにすることで、ニューラルネットワークの一般化を改善する効率的なデータ拡張アプローチである。
本稿では,非結合型正規化器(Decoupled Mixup, DM)を用いた効率的な混合目標関数を提案する。
DMは、ミキシングの本来の滑らかさを損なうことなく、硬質混合試料を適応的に利用して識別特性をマイニングすることができる。
論文 参考訳(メタデータ) (2022-03-21T07:12:18Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
ミックスアップスキームは、強化されたトレーニングサンプルを作成するために、サンプルのペアを混ぜることを提案する。
両世界のベストを捉えた、斬新だがシンプルなミックスアップ版を提示する。
論文 参考訳(メタデータ) (2021-12-16T11:27:48Z) - On Mixup Regularization [16.748910388577308]
Mixupは、トレーニングポイントとラベルの凸組み合わせとして新しい例を作成するデータ拡張テクニックである。
そこで本研究では、Mixupの新しい解釈のランダムな摂動が、複数の既知の正規化スキームを誘導することを示す。
論文 参考訳(メタデータ) (2020-06-10T20:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。