Text2PDE: Latent Diffusion Models for Accessible Physics Simulation
- URL: http://arxiv.org/abs/2410.01153v1
- Date: Wed, 2 Oct 2024 01:09:47 GMT
- Title: Text2PDE: Latent Diffusion Models for Accessible Physics Simulation
- Authors: Anthony Zhou, Zijie Li, Michael Schneier, John R Buchanan Jr, Amir Barati Farimani,
- Abstract summary: We introduce several methods to apply latent diffusion models to physics simulation.
We show that the proposed approach is competitive with current neural PDE solvers in both accuracy and efficiency.
By introducing a scalable, accurate, and usable physics simulator, we hope to bring neural PDE solvers closer to practical use.
- Score: 7.16525545814044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning have inspired numerous works on data-driven solutions to partial differential equation (PDE) problems. These neural PDE solvers can often be much faster than their numerical counterparts; however, each presents its unique limitations and generally balances training cost, numerical accuracy, and ease of applicability to different problem setups. To address these limitations, we introduce several methods to apply latent diffusion models to physics simulation. Firstly, we introduce a mesh autoencoder to compress arbitrarily discretized PDE data, allowing for efficient diffusion training across various physics. Furthermore, we investigate full spatio-temporal solution generation to mitigate autoregressive error accumulation. Lastly, we investigate conditioning on initial physical quantities, as well as conditioning solely on a text prompt to introduce text2PDE generation. We show that language can be a compact, interpretable, and accurate modality for generating physics simulations, paving the way for more usable and accessible PDE solvers. Through experiments on both uniform and structured grids, we show that the proposed approach is competitive with current neural PDE solvers in both accuracy and efficiency, with promising scaling behavior up to $\sim$3 billion parameters. By introducing a scalable, accurate, and usable physics simulator, we hope to bring neural PDE solvers closer to practical use.
Related papers
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Masked Autoencoders are PDE Learners [7.136205674624813]
Masked pretraining can consolidate heterogeneous physics to learn latent representations and perform latent PDE arithmetic.
neural solvers on learned latent representations can improve time-stepping and super-resolution performance across a variety of coefficients, discretizations, or boundary conditions.
arXiv Detail & Related papers (2024-03-26T14:17:01Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs)
The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters.
We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(103) and 1% relative error to the ground truth values.
arXiv Detail & Related papers (2023-11-28T01:35:06Z) - Filtered Partial Differential Equations: a robust surrogate constraint in physics-informed deep learning framework [1.220743263007369]
We propose a surrogate constraint (filtered PDE, FPDE in short) of the original physical equations to reduce the influence of noisy and sparse observation data.
In the noise and sparsity experiment, the proposed FPDE models have better robustness than the conventional PDE models.
For combining real-world experiment data into physics-informed training, the proposed FPDE constraint is useful.
arXiv Detail & Related papers (2023-11-07T07:38:23Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - KoopmanLab: machine learning for solving complex physics equations [7.815723299913228]
We present KoopmanLab, an efficient module of the Koopman neural operator family, for learning PDEs without analytic solutions or closed forms.
Our module consists of multiple variants of the Koopman neural operator (KNO), a kind of mesh-independent neural-network-based PDE solvers.
The compact variants of KNO can accurately solve PDEs with small model sizes while the large variants of KNO are more competitive in predicting highly complicated dynamic systems.
arXiv Detail & Related papers (2023-01-03T13:58:39Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
Climate predictions require fine-temporal resolutions to resolve all turbulent scales in the fluid simulations.
Current numerical model solveers PDEs on grids that are too coarse (3km to 200km on each side)
We design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query.
arXiv Detail & Related papers (2022-10-11T14:52:20Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.