[Re] Network Deconvolution
- URL: http://arxiv.org/abs/2410.01189v1
- Date: Wed, 2 Oct 2024 02:48:13 GMT
- Title: [Re] Network Deconvolution
- Authors: Rochana R. Obadage, Kumushini Thennakoon, Sarah M. Rajtmajer, Jian Wu,
- Abstract summary: "Network deconvolution" is used to remove pixel-wise and channel-wise correlations before data is fed into each layer.
We successfully reproduce the results reported in Tables 1 and 2 of the original paper.
- Score: 3.2149341556907256
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Our work aims to reproduce the set of findings published in "Network Deconvolution" by Ye et al. (2020)[1]. That paper proposes an optimization technique for model training in convolutional neural networks. The proposed technique "network deconvolution" is used in convolutional neural networks to remove pixel-wise and channel-wise correlations before data is fed into each layer. In particular, we interrogate the validity of the authors' claim that using network deconvolution instead of batch normalization improves deep learning model performance. Our effort confirms the validity of this claim, successfully reproducing the results reported in Tables 1 and 2 of the original paper. Our study involved 367 unique experiments across multiple architectures, datasets, and hyper parameter configurations. For Table 1, while there were some minor deviations in accuracy when compared to the original values (within 10%), the overall trend was consistent with the original study's findings when training the models with epochs 20 and 100. For Table 2, all 14 reproduced values were consistent with the original values. Additionally, we document the training and testing times for each architecture in Table 1 with 1, 20, and 100 epoch settings for both CIFAR-10 and CIFAR-100 datasets. We document the total execution times for Table 2 architectures with the ImageNet dataset. The data and software used for this reproducibility study are publicly available at https://github.com/lamps-lab/rep-network-deconvolution.
Related papers
- Replication: Contrastive Learning and Data Augmentation in Traffic
Classification Using a Flowpic Input Representation [47.95762911696397]
We reproduce [16] on the same datasets and replicate its most salient aspect (the importance of data augmentation) on three additional public datasets.
While we confirm most of the original results, we also found a 20% accuracy drop on some of the investigated scenarios due to a data shift in the original dataset.
arXiv Detail & Related papers (2023-09-18T12:55:09Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
We prove convergence of depth 2 neural networks, trained via gradient descent, to a global minimum.
Our model has the following features: regression with quadratic loss function, fully connected feedforward architecture, RelU activations, Gaussian data instances, adversarial labels.
They strongly suggest that, at least in our model, the convergence phenomenon extends well beyond the NTK regime''
arXiv Detail & Related papers (2022-12-05T14:47:52Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Involution: Inverting the Inherence of Convolution for Visual
Recognition [72.88582255910835]
We present a novel atomic operation for deep neural networks by inverting the principles of convolution, coined as involution.
The proposed involution operator could be leveraged as fundamental bricks to build the new generation of neural networks for visual recognition.
Our involution-based models improve the performance of convolutional baselines using ResNet-50 by up to 1.6% top-1 accuracy, 2.5% and 2.4% bounding box AP, and 4.7% mean IoU absolutely.
arXiv Detail & Related papers (2021-03-10T18:40:46Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step.
Specifically, we utilize an adaptively weighted $ell1$ penalty on the weights during training, which we combine with a generalization of the regularized dual averaging (RDA) algorithm in order to train sparse neural networks.
arXiv Detail & Related papers (2020-08-21T19:35:54Z) - Machine learning for complete intersection Calabi-Yau manifolds: a
methodological study [0.0]
We revisit the question of predicting Hodge numbers $h1,1$ and $h2,1$ of complete Calabi-Yau intersections using machine learning (ML)
We obtain 97% (resp. 99%) accuracy for $h1,1$ using a neural network inspired by the Inception model for the old dataset, using only 30% (resp. 70%) of the data for training.
For the new one, a simple linear regression leads to almost 100% accuracy with 30% of the data for training.
arXiv Detail & Related papers (2020-07-30T19:43:49Z) - Passive Batch Injection Training Technique: Boosting Network Performance
by Injecting Mini-Batches from a different Data Distribution [39.8046809855363]
This work presents a novel training technique for deep neural networks that makes use of additional data from a distribution that is different from that of the original input data.
To the best of our knowledge, this is the first work that makes use of different data distribution to aid the training of convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-06-08T08:17:32Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z) - Training Binary Neural Networks with Real-to-Binary Convolutions [52.91164959767517]
We show how to train binary networks to within a few percent points of the full precision counterpart.
We show how to build a strong baseline, which already achieves state-of-the-art accuracy.
We show that, when putting all of our improvements together, the proposed model beats the current state of the art by more than 5% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2020-03-25T17:54:38Z) - Question Type Classification Methods Comparison [0.0]
The paper presents a comparative study of state-of-the-art approaches for question classification task: Logistic Regression, Convolutional Neural Networks (CNN), Long Short-Term Memory Network (LSTM) and Quasi-Recurrent Neural Networks (QRNN)
All models use pre-trained GLoVe word embeddings and trained on human-labeled data.
The best accuracy is achieved using CNN model with five convolutional layers and various kernel sizes stacked in parallel, followed by one fully connected layer.
arXiv Detail & Related papers (2020-01-03T00:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.