論文の概要: An uncertainty-aware Digital Shadow for underground multimodal CO2 storage monitoring
- arxiv url: http://arxiv.org/abs/2410.01218v1
- Date: Wed, 2 Oct 2024 03:58:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 22:28:32.811798
- Title: An uncertainty-aware Digital Shadow for underground multimodal CO2 storage monitoring
- Title(参考訳): 地下マルチモーダルCO2貯蔵監視のための不確実性を考慮したディジタルシャドウ
- Authors: Abhinav Prakash Gahlot, Rafael Orozco, Ziyi Yin, Felix J. Herrmann,
- Abstract要約: Geological Carbon Storage GCSは、おそらく唯一利用可能なスケーラブルなネット負のCO2排出技術である。
機械学習に基づくデータ同化フレームワークを導入し、現実的な数値シミュレーションで検証する。
この研究は、不確実性を意識したインプリンシプルなスケーラブルなデジタルシャドウの概念の最初の証明である。
- 参考スコア(独自算出の注目度): 1.1249583407496222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geological Carbon Storage GCS is arguably the only scalable net-negative CO2 emission technology available While promising subsurface complexities and heterogeneity of reservoir properties demand a systematic approach to quantify uncertainty when optimizing production and mitigating storage risks which include assurances of Containment and Conformance of injected supercritical CO2 As a first step towards the design and implementation of a Digital Twin for monitoring underground storage operations a machine learning based data-assimilation framework is introduced and validated on carefully designed realistic numerical simulations As our implementation is based on Bayesian inference but does not yet support control and decision-making we coin our approach an uncertainty-aware Digital Shadow To characterize the posterior distribution for the state of CO2 plumes conditioned on multi-modal time-lapse data the envisioned Shadow combines techniques from Simulation-Based Inference SBI and Ensemble Bayesian Filtering to establish probabilistic baselines and assimilate multi-modal data for GCS problems that are challenged by large degrees of freedom nonlinear multi-physics non-Gaussianity and computationally expensive to evaluate fluid flow and seismic simulations To enable SBI for dynamic systems a recursive scheme is proposed where the Digital Shadows neural networks are trained on simulated ensembles for their state and observed data well and/or seismic Once training is completed the systems state is inferred when time-lapse field data becomes available In this computational study we observe that a lack of knowledge on the permeability field can be factored into the Digital Shadows uncertainty quantification To our knowledge this work represents the first proof of concept of an uncertainty-aware in-principle scalable Digital Shadow.
- Abstract(参考訳): Geological Carbon Storage GCSは、おそらく唯一、スケーラブルなネット負のCO2排出技術である。 将来的な地下の複雑さと貯水池特性の不均一性は、生産を最適化し、注入された超臨界CO2の汚染の保証を含むストレージリスクを緩和する上で、不確実性を定量化するための体系的なアプローチを要求する。 地下のストレージ操作を監視するためのDigital Twinの設計と実装に向けた第一歩として、機械学習ベースのデータ同化フレームワークを導入して、慎重に設計された現実的な数値シミュレーションに基づいて検証する 当社の実装は、ベイズ推論に基づいているが、制御と意思決定をまだサポートしていない。
関連論文リスト
- Diffusion-based subsurface multiphysics monitoring and forecasting [4.2193475197905705]
本稿では,ビデオ拡散モデルを用いた新しい地下マルチ物理モニタリングおよび予測フレームワークを提案する。
このアプローチは、CO$2$進化の高品質な表現と、それに伴う地下弾性特性の変化を生成することができる。
コンパスモデルに基づく実験では,CO$モニタリングに関連する本質的に複雑な物理現象を,提案手法がうまく捉えることができた。
論文 参考訳(メタデータ) (2024-07-25T23:04:37Z) - The Significance of Latent Data Divergence in Predicting System Degradation [1.2058600649065616]
条件ベースのメンテナンスは、エンジニアリングシステムにおける潜在的な障害を早期に検出する上で、重要である。
本稿では,システムコンポーネントの潜在データ内における統計的類似性の分析を基礎とした新しい手法を提案する。
システム間の類似性は、これらの先行の相違を評価し、個々のシステム行動の微妙な理解を提供することによって推測する。
論文 参考訳(メタデータ) (2024-06-13T11:41:20Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
データ駆動方式で運用ロジックを符号化することで,生産ラインのディジタルツインをデプロイすることを提案する。
我々は,自己注意型時間畳み込みニューラルネットワークに基づく生産プロセスの品質予測モデルを採用する。
本手法は,本手法により,仮想及び実生産ライン間のシームレスな統合を促進できることを示す。
論文 参考訳(メタデータ) (2024-05-20T09:28:23Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - A digital twin framework for civil engineering structures [0.6249768559720122]
デジタルツインの概念は、条件ベースの予測保守パラダイムを前進させる魅力的な機会である。
本研究は, 土木構造物の健康モニタリング, 保守, 管理計画に対する予測的ディジタルツインアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-02T21:38:36Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
データ駆動モデルは、リアルタイムのアップデートと予測を可能にするデジタルツインにおいて重要な役割を果たす。
利用可能なデータの忠実さと正確なセンサーデータの不足は、しばしば代理モデルの効率的な学習を妨げる。
本稿では,ロバストなマルチフィデリティ・サロゲートモデルの開発から始まる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-26T05:58:17Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - A nudged hybrid analysis and modeling approach for realtime wake-vortex
transport and decay prediction [0.0]
流れの縮小秩序モデル (ROM) を強化するための長期記憶 (LSTM) ヌージングフレームワークは, 騒音測定を利用して航空交通改善を行った。
我々は、現実的な応用において、初期および境界条件、モデルパラメータ、および測定に不確実性が存在するという事実に基づいて構築する。
LSTM nudging (LSTM-N) 法では,不完全なGROMと不確実な状態推定を組み合わせた予測とスパーシアンセンサ測定を併用して,動的データ同化フレームワークにおいてより信頼性の高い予測を行う。
論文 参考訳(メタデータ) (2020-08-05T23:47:15Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。