Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications
- URL: http://arxiv.org/abs/2410.01268v1
- Date: Wed, 2 Oct 2024 06:24:51 GMT
- Title: Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications
- Authors: Pohsun Feng, Ziqian Bi, Yizhu Wen, Xuanhe Pan, Benji Peng, Ming Liu, Jiawei Xu, Keyu Chen, Junyu Liu, Caitlyn Heqi Yin, Sen Zhang, Jinlang Wang, Qian Niu, Ming Li, Tianyang Wang,
- Abstract summary: This book serves as an introduction to deep learning and machine learning, focusing on their applications in big data analytics.
It covers essential concepts, tools like ChatGPT and Claude, hardware recommendations, and practical guidance on setting up development environments.
Designed for beginners and advanced users alike, it provides step-by-step instructions, hands-on projects, and insights into AI's future.
- Score: 17.624263707781655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This book serves as an introduction to deep learning and machine learning, focusing on their applications in big data analytics. It covers essential concepts, tools like ChatGPT and Claude, hardware recommendations, and practical guidance on setting up development environments using libraries like PyTorch and TensorFlow. Designed for beginners and advanced users alike, it provides step-by-step instructions, hands-on projects, and insights into AI's future, including AutoML and edge computing.
Related papers
- Mastering AI: Big Data, Deep Learning, and the Evolution of Large Language Models -- AutoML from Basics to State-of-the-Art Techniques [17.62426370778165]
The paper is structured to assist both beginners and experienced practitioners, with detailed discussions on popular AutoML tools.
It also addresses emerging topics like Neural Architecture Search (NAS) and AutoML's applications in deep learning.
arXiv Detail & Related papers (2024-10-12T17:11:39Z) - Deep Learning and Machine Learning: Advancing Big Data Analytics and Management with Design Patterns [17.624263707781655]
The book explores the application of classical software engineering patterns to optimize the development, maintenance, and scalability of big data analytics systems.
Key design patterns such as Singleton, Factory, Observer, and Strategy are analyzed for their impact on model management, deployment strategies, and team collaboration.
This volume is an essential resource for developers, researchers, and engineers aiming to enhance their technical expertise in both machine learning and software design.
arXiv Detail & Related papers (2024-10-04T02:50:58Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer [16.957968437298124]
Book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management.
Offers intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work.
arXiv Detail & Related papers (2024-09-25T17:31:45Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Tensorflow Pretrained Models [17.372501468675303]
The book covers practical implementations of modern architectures like ResNet, MobileNet, and EfficientNet.
It compares linear probing and model fine-tuning, offering visualizations using techniques such as PCA, t-SNE, and UMAP.
By blending theoretical insights with hands-on practice, this book equips readers with the knowledge to confidently tackle various deep learning challenges.
arXiv Detail & Related papers (2024-09-20T15:07:14Z) - Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
The Deep Fast Machine Learning Utils (DFMLU) library provides tools designed to automate and enhance aspects of machine learning processes.
DFMLU offers functionalities that support model development and data handling.
This manuscript presents an overview of DFMLU's functionalities, providing Python examples for each tool.
arXiv Detail & Related papers (2024-09-14T21:39:17Z) - OmniXAI: A Library for Explainable AI [98.07381528393245]
We introduce OmniXAI, an open-source Python library of eXplainable AI (XAI)
It offers omni-way explainable AI capabilities and various interpretable machine learning techniques.
For practitioners, the library provides an easy-to-use unified interface to generate the explanations for their applications.
arXiv Detail & Related papers (2022-06-01T11:35:37Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Towards Machine Learning for Placement and Routing in Chip Design: a
Methodological Overview [72.79089075263985]
Placement and routing are two indispensable and challenging (NP-hard) tasks in modern chip design flows.
Machine learning has shown promising prospects by its data-driven nature, which can be of less reliance on knowledge and priors.
arXiv Detail & Related papers (2022-02-28T06:28:44Z) - Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and Directions [58.220137936626315]
This paper extensively discusses automated graph machine learning approaches.
We introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning.
Also, we describe a tailored benchmark that supports unified, reproducible, and efficient evaluations.
arXiv Detail & Related papers (2022-01-04T18:31:31Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.