論文の概要: The Unlikely Hero: Nonideality in Analog Photonic Neural Networks as Built-in Defender Against Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2410.01289v1
- Date: Wed, 2 Oct 2024 07:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:59:16.085080
- Title: The Unlikely Hero: Nonideality in Analog Photonic Neural Networks as Built-in Defender Against Adversarial Attacks
- Title(参考訳): アナログフォトニックニューラルネットワークにおける非理想性:敵対的攻撃に対する防御の内蔵
- Authors: Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu,
- Abstract要約: フォトニックアナログ混合信号AIハードウェアの対向ロバスト性は未解明のままである。
本フレームワークは、攻撃前の一意重み符号化と攻撃後の脆弱性認識重みロックにより、敏感な重みを積極的に保護する。
我々のフレームワークは、わずか3%のメモリオーバーヘッドしか持たない逆ビットフリップ攻撃において、ほぼ理想のオンチップ推定精度を維持している。
- 参考スコア(独自算出の注目度): 7.042495891256446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic-photonic computing systems have emerged as a promising platform for accelerating deep neural network (DNN) workloads. Major efforts have been focused on countering hardware non-idealities and boosting efficiency with various hardware/algorithm co-design methods. However, the adversarial robustness of such photonic analog mixed-signal AI hardware remains unexplored. Though the hardware variations can be mitigated with robustness-driven optimization methods, malicious attacks on the hardware show distinct behaviors from noises, which requires a customized protection method tailored to optical analog hardware. In this work, we rethink the role of conventionally undesired non-idealities in photonic analog accelerators and claim their surprising effects on defending against adversarial weight attacks. Inspired by the protection effects from DNN quantization and pruning, we propose a synergistic defense framework tailored for optical analog hardware that proactively protects sensitive weights via pre-attack unary weight encoding and post-attack vulnerability-aware weight locking. Efficiency-reliability trade-offs are formulated as constrained optimization problems and efficiently solved offline without model re-training costs. Extensive evaluation of various DNN benchmarks with a multi-core photonic accelerator shows that our framework maintains near-ideal on-chip inference accuracy under adversarial bit-flip attacks with merely <3% memory overhead. Our codes are open-sourced at https://github.com/ScopeX-ASU/Unlikely_Hero.
- Abstract(参考訳): 電子フォトニクスコンピューティングシステムは、ディープニューラルネットワーク(DNN)ワークロードを加速するための有望なプラットフォームとして登場した。
ハードウェアの非理想に対処し、様々なハードウェア/アルゴリズムの共同設計手法による効率の向上に注力してきた。
しかし、このようなフォトニックアナログ混合信号AIハードウェアの対角的堅牢性は未解明のままである。
ハードウェアのバリエーションはロバストネス駆動の最適化手法で緩和できるが、ハードウェアに対する悪意のある攻撃は、光学アナログハードウェアに合わせてカスタマイズされた保護方法を必要とするノイズとは異なる振る舞いを示す。
本研究では、フォトニックアナログ加速器における従来の望ましくない非イデオロギーの役割を再考し、敵の重み付けに対する防御に対する彼らの驚くべき効果を主張する。
DNN量子化とプルーニングの保護効果にインスパイアされた光アナログハードウェアに適した相乗的防御フレームワークを提案する。
効率-信頼性トレードオフは、制約付き最適化問題として定式化され、モデル再学習コストなしで効率よくオフラインで解決される。
マルチコア・フォトニック・アクセラレーターを用いた各種DNNベンチマークの大規模評価により, 逆ビットフリップ攻撃においては, メモリオーバーヘッドが3%に過ぎず, ほぼ理想的オンチップ推定精度が維持されていることがわかった。
私たちのコードはhttps://github.com/ScopeX-ASU/Unlikely_Hero.comでオープンソース化されています。
関連論文リスト
- The Inherent Adversarial Robustness of Analog In-Memory Computing [2.435021773579434]
Deep Neural Network(DNN)アルゴリズムの重要な課題は、敵の攻撃に対する脆弱性である。
本稿では,位相変化メモリ(PCM)デバイスを用いたAIMCチップ上での予測を実験的に検証する。
ハードウェア・イン・ザ・ループ攻撃を行う際には、さらなる堅牢性も観察される。
論文 参考訳(メタデータ) (2024-11-11T14:29:59Z) - DNN-Defender: A Victim-Focused In-DRAM Defense Mechanism for Taming Adversarial Weight Attack on DNNs [10.201050807991175]
本稿では,DNN(Quantized Deep Neural Networks)に適したDRAMベースの犠牲者中心防御機構について紹介する。
DNN-Defenderは、ターゲットのRowHammer攻撃のパフォーマンスをランダムな攻撃レベルに低下させる高いレベルの保護を提供することができる。
提案されたディフェンスは、ソフトウェアトレーニングやハードウェアオーバーヘッドを発生させることなく、CIFAR-10とImageNetデータセットに精度の低下はない。
論文 参考訳(メタデータ) (2023-05-14T00:30:58Z) - DNNShield: Dynamic Randomized Model Sparsification, A Defense Against
Adversarial Machine Learning [2.485182034310304]
本稿では,ハードウェアによる機械学習攻撃に対する防御手法を提案する。
DNNSHIELDは、相手入力の信頼度に応じて応答の強さに適応する。
VGG16は86%,ResNet50は88%であった。
論文 参考訳(メタデータ) (2022-07-31T19:29:44Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - On the Noise Stability and Robustness of Adversarially Trained Networks
on NVM Crossbars [6.506883928959601]
我々は,NVMクロスバー型アナログハードウェアの対角的トレーニングと本質的ロバスト性を融合して,ロバストなディープニューラルネットワーク(DNN)の設計について検討する。
この結果から, ハードウェアの非理想性と, 最適ロバスト性と性能のために$epsilon_train$を慎重に校正する必要があることが示唆された。
論文 参考訳(メタデータ) (2021-09-19T04:59:39Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Adversarial Robustness by Design through Analog Computing and Synthetic
Gradients [80.60080084042666]
光コプロセッサにインスパイアされた敵攻撃に対する新しい防御機構を提案する。
ホワイトボックス設定では、我々の防御はランダム投影のパラメータを難読化することで機能する。
光学系におけるランダムプロジェクションとバイナライゼーションの組み合わせにより、様々な種類のブラックボックス攻撃に対するロバスト性も向上する。
論文 参考訳(メタデータ) (2021-01-06T16:15:29Z) - On the Intrinsic Robustness of NVM Crossbars Against Adversarial Attacks [6.592909460916497]
アナログコンピューティングの非理想的動作は、敵攻撃の有効性を低下させることを示す。
攻撃者がアナログハードウェアに気づいていない非適応攻撃では、アナログコンピューティングは固有の頑健さの程度が異なることを観察する。
論文 参考訳(メタデータ) (2020-08-27T09:36:50Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。