The Unlikely Hero: Nonideality in Analog Photonic Neural Networks as Built-in Defender Against Adversarial Attacks
- URL: http://arxiv.org/abs/2410.01289v1
- Date: Wed, 2 Oct 2024 07:27:26 GMT
- Title: The Unlikely Hero: Nonideality in Analog Photonic Neural Networks as Built-in Defender Against Adversarial Attacks
- Authors: Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu,
- Abstract summary: adversarial robustness of photonic analog mixed-signal AI hardware remains unexplored.
Our framework proactively protects sensitive weights via pre-attack unary weight encoding and post-attack vulnerability-aware weight locking.
Our framework maintains near-ideal on-chip inference accuracy under adversarial bit-flip attacks with merely 3% memory overhead.
- Score: 7.042495891256446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic-photonic computing systems have emerged as a promising platform for accelerating deep neural network (DNN) workloads. Major efforts have been focused on countering hardware non-idealities and boosting efficiency with various hardware/algorithm co-design methods. However, the adversarial robustness of such photonic analog mixed-signal AI hardware remains unexplored. Though the hardware variations can be mitigated with robustness-driven optimization methods, malicious attacks on the hardware show distinct behaviors from noises, which requires a customized protection method tailored to optical analog hardware. In this work, we rethink the role of conventionally undesired non-idealities in photonic analog accelerators and claim their surprising effects on defending against adversarial weight attacks. Inspired by the protection effects from DNN quantization and pruning, we propose a synergistic defense framework tailored for optical analog hardware that proactively protects sensitive weights via pre-attack unary weight encoding and post-attack vulnerability-aware weight locking. Efficiency-reliability trade-offs are formulated as constrained optimization problems and efficiently solved offline without model re-training costs. Extensive evaluation of various DNN benchmarks with a multi-core photonic accelerator shows that our framework maintains near-ideal on-chip inference accuracy under adversarial bit-flip attacks with merely <3% memory overhead. Our codes are open-sourced at https://github.com/ScopeX-ASU/Unlikely_Hero.
Related papers
- The Inherent Adversarial Robustness of Analog In-Memory Computing [2.435021773579434]
A key challenge for Deep Neural Network (DNN) algorithms is their vulnerability to adversarial attacks.
In this paper, we experimentally validate a conjecture for the first time on an AIMC chip based on Phase Change Memory (PCM) devices.
Additional robustness is also observed when performing hardware-in-theloop attacks.
arXiv Detail & Related papers (2024-11-11T14:29:59Z) - DNN-Defender: A Victim-Focused In-DRAM Defense Mechanism for Taming Adversarial Weight Attack on DNNs [10.201050807991175]
We present the first DRAM-based victim-focused defense mechanism tailored for quantized Deep Neural Networks (DNNs)
DNN-Defender can deliver a high level of protection downgrading the performance of targeted RowHammer attacks to a random attack level.
The proposed defense has no accuracy drop on CIFAR-10 and ImageNet datasets without requiring any software training or incurring hardware overhead.
arXiv Detail & Related papers (2023-05-14T00:30:58Z) - DNNShield: Dynamic Randomized Model Sparsification, A Defense Against
Adversarial Machine Learning [2.485182034310304]
We propose a hardware-accelerated defense against machine learning attacks.
DNNSHIELD adapts the strength of the response to the confidence of the adversarial input.
We show an adversarial detection rate of 86% when applied to VGG16 and 88% when applied to ResNet50.
arXiv Detail & Related papers (2022-07-31T19:29:44Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - On the Noise Stability and Robustness of Adversarially Trained Networks
on NVM Crossbars [6.506883928959601]
We study the design of robust Deep Neural Networks (DNNs) through the amalgamation of adversarial training and intrinsic robustness of NVM crossbar-based analog hardware.
Our results indicate that implementing adversarially trained networks on analog hardware requires careful calibration between hardware non-idealities and $epsilon_train$ for optimum robustness and performance.
arXiv Detail & Related papers (2021-09-19T04:59:39Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Adversarial Robustness by Design through Analog Computing and Synthetic
Gradients [80.60080084042666]
We propose a new defense mechanism against adversarial attacks inspired by an optical co-processor.
In the white-box setting, our defense works by obfuscating the parameters of the random projection.
We find the combination of a random projection and binarization in the optical system also improves robustness against various types of black-box attacks.
arXiv Detail & Related papers (2021-01-06T16:15:29Z) - On the Intrinsic Robustness of NVM Crossbars Against Adversarial Attacks [6.592909460916497]
We show that the non-ideal behavior of analog computing lowers the effectiveness of adversarial attacks.
In a non-adaptive attack, where the attacker is unaware of the analog hardware, we observe that analog computing offers a varying degree of intrinsic robustness.
arXiv Detail & Related papers (2020-08-27T09:36:50Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.