LaGeM: A Large Geometry Model for 3D Representation Learning and Diffusion
- URL: http://arxiv.org/abs/2410.01295v1
- Date: Wed, 2 Oct 2024 07:42:20 GMT
- Title: LaGeM: A Large Geometry Model for 3D Representation Learning and Diffusion
- Authors: Biao Zhang, Peter Wonka,
- Abstract summary: This paper introduces a novel hierarchical autoencoder that maps 3D models into a compressed latent space.
We show that the model can be used to represent a wide range of 3D models while faithfully representing high-resolution geometry details.
- Score: 46.76882780184126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel hierarchical autoencoder that maps 3D models into a highly compressed latent space. The hierarchical autoencoder is specifically designed to tackle the challenges arising from large-scale datasets and generative modeling using diffusion. Different from previous approaches that only work on a regular image or volume grid, our hierarchical autoencoder operates on unordered sets of vectors. Each level of the autoencoder controls different geometric levels of detail. We show that the model can be used to represent a wide range of 3D models while faithfully representing high-resolution geometry details. The training of the new architecture takes 0.70x time and 0.58x memory compared to the baseline. We also explore how the new representation can be used for generative modeling. Specifically, we propose a cascaded diffusion framework where each stage is conditioned on the previous stage. Our design extends existing cascaded designs for image and volume grids to vector sets.
Related papers
- GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained.
We propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner.
arXiv Detail & Related papers (2024-06-06T17:00:10Z) - MeshXL: Neural Coordinate Field for Generative 3D Foundation Models [51.1972329762843]
We present a family of generative pre-trained auto-regressive models, which addresses the process of 3D mesh generation with modern large language model approaches.
MeshXL is able to generate high-quality 3D meshes, and can also serve as foundation models for various down-stream applications.
arXiv Detail & Related papers (2024-05-31T14:35:35Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
Auto-regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space.
We propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids.
arXiv Detail & Related papers (2023-03-26T12:03:18Z) - Learning to Generate 3D Shapes from a Single Example [28.707149807472685]
We present a multi-scale GAN-based model designed to capture the input shape's geometric features across a range of spatial scales.
We train our generative model on a voxel pyramid of the reference shape, without the need of any external supervision or manual annotation.
The resulting shapes present variations across different scales, and at the same time retain the global structure of the reference shape.
arXiv Detail & Related papers (2022-08-05T01:05:32Z) - A Convolutional Architecture for 3D Model Embedding [1.3858051019755282]
We propose a deep learning architecture to handle 3D models as an input.
We show that the embedding representation conveys semantic information that helps to deal with the similarity assessment of 3D objects.
arXiv Detail & Related papers (2021-03-05T15:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.