Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps
- URL: http://arxiv.org/abs/2410.01319v1
- Date: Wed, 2 Oct 2024 08:22:42 GMT
- Title: Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps
- Authors: Jiyun Jang, Mincheol Chang, Jongwon Park, Jinkyu Kim,
- Abstract summary: LiDAR-based 3D object detectors often fail to adapt well to target domains with different sensor configurations.
Recent studies suggest that pre-trained backbones can be learned in a self-supervised manner with large-scale unlabeled LiDAR frames.
We propose a novel method, called Domain Adaptive Distill-Tuning (DADT), to adapt a pre-trained model with limited target data.
- Score: 8.897884780881535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-based 3D object detectors have been largely utilized in various applications, including autonomous vehicles or mobile robots. However, LiDAR-based detectors often fail to adapt well to target domains with different sensor configurations (e.g., types of sensors, spatial resolution, or FOVs) and location shifts. Collecting and annotating datasets in a new setup is commonly required to reduce such gaps, but it is often expensive and time-consuming. Recent studies suggest that pre-trained backbones can be learned in a self-supervised manner with large-scale unlabeled LiDAR frames. However, despite their expressive representations, they remain challenging to generalize well without substantial amounts of data from the target domain. Thus, we propose a novel method, called Domain Adaptive Distill-Tuning (DADT), to adapt a pre-trained model with limited target data (approximately 100 LiDAR frames), retaining its representation power and preventing it from overfitting. Specifically, we use regularizers to align object-level and context-level representations between the pre-trained and finetuned models in a teacher-student architecture. Our experiments with driving benchmarks, i.e., Waymo Open dataset and KITTI, confirm that our method effectively finetunes a pre-trained model, achieving significant gains in accuracy.
Related papers
- Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection [52.66283064389691]
State-of-the-art 3D object detectors are often trained on massive labeled datasets.
Recent works demonstrate that self-supervised pre-training with unlabeled data can improve detection accuracy with limited labels.
We propose a shelf-supervised approach for generating zero-shot 3D bounding boxes from paired RGB and LiDAR data.
arXiv Detail & Related papers (2024-06-14T15:21:57Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
deep learning methods heavily rely on annotated data and often face domain generalization issues.
LiDAR-CS dataset is the first dataset that addresses the sensor-related gaps in the domain of 3D object detection in real traffic.
arXiv Detail & Related papers (2023-01-29T19:10:35Z) - LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object
Detection [96.63947479020631]
In many real-world applications, the LiDAR points used by mass-produced robots and vehicles usually have fewer beams than that in large-scale public datasets.
We propose the LiDAR Distillation to bridge the domain gap induced by different LiDAR beams for 3D object detection.
arXiv Detail & Related papers (2022-03-28T17:59:02Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - FAST3D: Flow-Aware Self-Training for 3D Object Detectors [12.511087244102036]
State-of-the-art self-training approaches mostly ignore the temporal nature of autonomous driving data.
We propose a flow-aware self-training method that enables unsupervised domain adaptation for 3D object detectors on continuous LiDAR point clouds.
Our results show a significant improvement over the state-of-the-art, without any prior target domain knowledge.
arXiv Detail & Related papers (2021-10-18T14:32:05Z) - Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation [5.745037250837124]
Unsupervised Domain Adaptation (UDA) techniques are essential to fill this domain gap.
We propose AdaptLPS, a novel UDA approach for LiDAR panoptic segmentation.
We show that AdaptLPS outperforms existing UDA approaches by up to 6.41 pp in terms of the PQ score.
arXiv Detail & Related papers (2021-09-30T17:30:43Z) - Understanding Self-Training for Gradual Domain Adaptation [107.37869221297687]
We consider gradual domain adaptation, where the goal is to adapt an initial classifier trained on a source domain given only unlabeled data that shifts gradually in distribution towards a target domain.
We prove the first non-vacuous upper bound on the error of self-training with gradual shifts, under settings where directly adapting to the target domain can result in unbounded error.
The theoretical analysis leads to algorithmic insights, highlighting that regularization and label sharpening are essential even when we have infinite data, and suggesting that self-training works particularly well for shifts with small Wasserstein-infinity distance.
arXiv Detail & Related papers (2020-02-26T08:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.