AgriCLIP: Adapting CLIP for Agriculture and Livestock via Domain-Specialized Cross-Model Alignment
- URL: http://arxiv.org/abs/2410.01407v1
- Date: Wed, 2 Oct 2024 10:33:49 GMT
- Title: AgriCLIP: Adapting CLIP for Agriculture and Livestock via Domain-Specialized Cross-Model Alignment
- Authors: Umair Nawaz, Muhammad Awais, Hanan Gani, Muzammal Naseer, Fahad Khan, Salman Khan, Rao Muhammad Anwer,
- Abstract summary: AgriCLIP is a vision-language foundational model dedicated to the domain of agriculture and livestock.
Our ALive dataset covers crops, livestock, and fishery, with around 600,000 image-text pairs.
AgriCLIP framework achieves an absolute gain of 7.8% in terms of average zero-shot classification accuracy.
- Score: 35.35466045639057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capitalizing on vast amount of image-text data, large-scale vision-language pre-training has demonstrated remarkable zero-shot capabilities and has been utilized in several applications. However, models trained on general everyday web-crawled data often exhibit sub-optimal performance for specialized domains, likely due to domain shift. Recent works have tackled this problem for some domains (e.g., healthcare) by constructing domain-specialized image-text data. However, constructing a dedicated large-scale image-text dataset for sustainable area of agriculture and livestock is still open to research. Further, this domain desires fine-grained feature learning due to the subtle nature of the downstream tasks (e.g, nutrient deficiency detection, livestock breed classification). To address this we present AgriCLIP, a vision-language foundational model dedicated to the domain of agriculture and livestock. First, we propose a large-scale dataset, named ALive, that leverages customized prompt generation strategy to overcome the scarcity of expert annotations. Our ALive dataset covers crops, livestock, and fishery, with around 600,000 image-text pairs. Second, we propose a training pipeline that integrates both contrastive and self-supervised learning to learn both global semantic and local fine-grained domain-specialized features. Experiments on diverse set of 20 downstream tasks demonstrate the effectiveness of AgriCLIP framework, achieving an absolute gain of 7.8\% in terms of average zero-shot classification accuracy, over the standard CLIP adaptation via domain-specialized ALive dataset. Our ALive dataset and code can be accessible at \href{https://github.com/umair1221/AgriCLIP/tree/main}{Github}.
Related papers
- Precision at Scale: Domain-Specific Datasets On-Demand [3.5900418884504095]
Precision at Scale (PaS) is a novel method for the autonomous creation of domain-specific datasets on-demand.
PaS pipeline enables leveraging state-of-the-art foundational and generative models to create a collection of images belonging to any given domain.
We prove that automatically generated domain-specific datasets lead to better pretraining than large-scale supervised datasets such as ImageNet-1k and ImageNet-21k.
arXiv Detail & Related papers (2024-07-03T19:17:42Z) - Diversify Your Vision Datasets with Automatic Diffusion-Based
Augmentation [66.6546668043249]
ALIA (Automated Language-guided Image Augmentation) is a method which utilizes large vision and language models to automatically generate natural language descriptions of a dataset's domains.
To maintain data integrity, a model trained on the original dataset filters out minimal image edits and those which corrupt class-relevant information.
We show that ALIA is able to surpasses traditional data augmentation and text-to-image generated data on fine-grained classification tasks.
arXiv Detail & Related papers (2023-05-25T17:43:05Z) - Using Language to Extend to Unseen Domains [81.37175826824625]
It is expensive to collect training data for every possible domain that a vision model may encounter when deployed.
We consider how simply verbalizing the training domain as well as domains we want to extend to but do not have data for can improve robustness.
Using a multimodal model with a joint image and language embedding space, our method LADS learns a transformation of the image embeddings from the training domain to each unseen test domain.
arXiv Detail & Related papers (2022-10-18T01:14:02Z) - Enlisting 3D Crop Models and GANs for More Data Efficient and
Generalizable Fruit Detection [0.0]
We propose a method that generates agricultural images from a synthetic 3D crop model domain into real world crop domains.
The method uses a semantically constrained GAN (generative adversarial network) to preserve the fruit position and geometry.
Incremental training experiments in vineyard grape detection tasks show that the images generated from our method can significantly speed the domain process.
arXiv Detail & Related papers (2021-08-30T16:11:59Z) - Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation [78.28390172958643]
We identify two key aspects that can help to alleviate multiple domain-shifts in the multi-target domain adaptation (MTDA)
We propose Curriculum Graph Co-Teaching (CGCT) that uses a dual classifier head, with one of them being a graph convolutional network (GCN) which aggregates features from similar samples across the domains.
When the domain labels are available, we propose Domain-aware Curriculum Learning (DCL), a sequential adaptation strategy that first adapts on the easier target domains, followed by the harder ones.
arXiv Detail & Related papers (2021-04-01T23:41:41Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z) - Deep Domain-Adversarial Image Generation for Domain Generalisation [115.21519842245752]
Machine learning models typically suffer from the domain shift problem when trained on a source dataset and evaluated on a target dataset of different distribution.
To overcome this problem, domain generalisation (DG) methods aim to leverage data from multiple source domains so that a trained model can generalise to unseen domains.
We propose a novel DG approach based on emphDeep Domain-Adversarial Image Generation (DDAIG)
arXiv Detail & Related papers (2020-03-12T23:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.