SiamSeg: Self-Training with Contrastive Learning for Unsupervised Domain Adaptation Semantic Segmentation in Remote Sensing
- URL: http://arxiv.org/abs/2410.13471v3
- Date: Thu, 28 Nov 2024 06:38:11 GMT
- Title: SiamSeg: Self-Training with Contrastive Learning for Unsupervised Domain Adaptation Semantic Segmentation in Remote Sensing
- Authors: Bin Wang, Fei Deng, Shuang Wang, Wen Luo, Zhixuan Zhang, Peifan Jiang,
- Abstract summary: Unsupervised domain adaptation (UDA) enables models to learn from unlabeled target domain data while leveraging labeled source domain data.
We propose integrating contrastive learning into UDA, enhancing the model's ability to capture semantic information in the target domain.
Our method, SimSeg, outperforms existing approaches, achieving state-of-the-art results.
- Score: 13.549403813487022
- License:
- Abstract: Semantic segmentation of remote sensing (RS) images is a challenging yet essential task with broad applications. While deep learning, particularly supervised learning with large-scale labeled datasets, has significantly advanced this field, the acquisition of high-quality labeled data remains costly and time-intensive. Unsupervised domain adaptation (UDA) provides a promising alternative by enabling models to learn from unlabeled target domain data while leveraging labeled source domain data. Recent self-training (ST) approaches employing pseudo-label generation have shown potential in mitigating domain discrepancies. However, the application of ST to RS image segmentation remains underexplored. Factors such as variations in ground sampling distance, imaging equipment, and geographic diversity exacerbate domain shifts, limiting model performance across domains. In that case, existing ST methods, due to significant domain shifts in cross-domain RS images, often underperform. To address these challenges, we propose integrating contrastive learning into UDA, enhancing the model's ability to capture semantic information in the target domain by maximizing the similarity between augmented views of the same image. This additional supervision improves the model's representational capacity and segmentation performance in the target domain. Extensive experiments conducted on RS datasets, including Potsdam, Vaihingen, and LoveDA, demonstrate that our method, SimSeg, outperforms existing approaches, achieving state-of-the-art results. Visualization and quantitative analyses further validate SimSeg's superior ability to learn from the target domain. The code is publicly available at https://github.com/woldier/SiamSeg.
Related papers
- Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images [63.58800688320182]
Domain Generalization is a challenging task in machine learning.
Current methodology lacks quantitative understanding about shifts in stylistic domain.
We introduce a new DG paradigm to address these risks.
arXiv Detail & Related papers (2024-05-24T22:13:31Z) - Joint semi-supervised and contrastive learning enables domain generalization and multi-domain segmentation [1.5393913074555419]
We introduce SegCLR, a versatile framework designed to segment images across different domains.
SegCLR employs supervised and contrastive learning simultaneously to effectively learn from both labeled and unlabeled data.
We demonstrate the superior performance of SegCLR through a comprehensive evaluation involving three diverse clinical datasets.
arXiv Detail & Related papers (2024-05-08T18:10:59Z) - DDF: A Novel Dual-Domain Image Fusion Strategy for Remote Sensing Image Semantic Segmentation with Unsupervised Domain Adaptation [6.223876661401282]
Unsupervised domain adaptation (UDA) has proven to be advantageous in incorporating unclassified information from the target domain.
This paper proposes a hybrid training strategy as well as a novel dual-domain image fusion strategy.
The efficacy of our approach is substantiated by extensive benchmark experiments and ablation studies conducted on the ISPRS Vaihingen and Potsdam datasets.
arXiv Detail & Related papers (2024-03-05T08:57:28Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.
We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.
Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
We propose a novel Multi-scale Multi-target Domain Adversarial Network (M2DAN) for angle closure classification.
Based on these domain-invariant features at different scales, the deep model trained on the source domain is able to classify angle closure on multiple target domains.
arXiv Detail & Related papers (2022-08-25T15:27:55Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Domain Adaptation on Semantic Segmentation for Aerial Images [3.946367634483361]
We propose a novel unsupervised domain adaptation framework to address domain shift in semantic image segmentation.
We also apply entropy minimization on the target domain to produce high-confident prediction.
We show improvement over state-of-the-art methods in terms of various metrics.
arXiv Detail & Related papers (2020-12-03T20:58:27Z) - Emotional Semantics-Preserved and Feature-Aligned CycleGAN for Visual
Emotion Adaptation [85.20533077846606]
Unsupervised domain adaptation (UDA) studies the problem of transferring models trained on one labeled source domain to another unlabeled target domain.
In this paper, we focus on UDA in visual emotion analysis for both emotion distribution learning and dominant emotion classification.
We propose a novel end-to-end cycle-consistent adversarial model, termed CycleEmotionGAN++.
arXiv Detail & Related papers (2020-11-25T01:31:01Z) - Towards Adaptive Semantic Segmentation by Progressive Feature Refinement [16.40758125170239]
We propose an innovative progressive feature refinement framework, along with domain adversarial learning to boost the transferability of segmentation networks.
As a result, the segmentation models trained with source domain images can be transferred to a target domain without significant performance degradation.
arXiv Detail & Related papers (2020-09-30T04:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.