CSIM: A Copula-based similarity index sensitive to local changes for Image quality assessment
- URL: http://arxiv.org/abs/2410.01411v2
- Date: Fri, 4 Oct 2024 15:06:09 GMT
- Title: CSIM: A Copula-based similarity index sensitive to local changes for Image quality assessment
- Authors: Safouane El Ghazouali, Umberto Michelucci, Yassin El Hillali, Hichem Nouira,
- Abstract summary: Image similarity metrics play an important role in computer vision applications, as they are used in image processing, computer vision and machine learning.
Existing metrics, such as PSNR, MSE, SSIM, ISSM and FSIM, often face limitations in terms of either speed, complexity or sensitivity to small changes in images.
A novel image similarity metric, namely CSIM, that combines real-time while being sensitive to subtle image variations is investigated in this paper.
- Score: 2.3874115898130865
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Image similarity metrics play an important role in computer vision applications, as they are used in image processing, computer vision and machine learning. Furthermore, those metrics enable tasks such as image retrieval, object recognition and quality assessment, essential in fields like healthcare, astronomy and surveillance. Existing metrics, such as PSNR, MSE, SSIM, ISSM and FSIM, often face limitations in terms of either speed, complexity or sensitivity to small changes in images. To address these challenges, a novel image similarity metric, namely CSIM, that combines real-time while being sensitive to subtle image variations is investigated in this paper. The novel metric uses Gaussian Copula from probability theory to transform an image into vectors of pixel distribution associated to local image patches. These vectors contain, in addition to intensities and pixel positions, information on the dependencies between pixel values, capturing the structural relationships within the image. By leveraging the properties of Copulas, CSIM effectively models the joint distribution of pixel intensities, enabling a more nuanced comparison of image patches making it more sensitive to local changes compared to other metrics. Experimental results demonstrate that CSIM outperforms existing similarity metrics in various image distortion scenarios, including noise, compression artifacts and blur. The metric's ability to detect subtle differences makes it suitable for applications requiring high precision, such as medical imaging, where the detection of minor anomalies can be of a high importance. The results obtained in this work can be reproduced from this Github repository: https://github.com/safouaneelg/copulasimilarity.
Related papers
- Cross-Domain Separable Translation Network for Multimodal Image Change Detection [11.25422609271201]
multimodal change detection (MCD) is particularly critical in the remote sensing community.
This paper focuses on addressing the challenges of MCD, especially the difficulty in comparing images from different sensors.
A novel unsupervised cross-domain separable translation network (CSTN) is proposed to overcome these limitations.
arXiv Detail & Related papers (2024-07-23T03:56:02Z) - How to Evaluate Semantic Communications for Images with ViTScore Metric? [18.657768058678375]
We propose a novel metric for evaluating image semantic similarity, named Vision Transformer Score (ViTScore)
ViTScore has 3 important properties, including symmetry, boundedness, and normalization, which make it convenient and intuitive for image measurement.
We show that ViTScore is robust and efficient in evaluating the semantic similarity of images.
arXiv Detail & Related papers (2023-09-09T23:03:50Z) - R-LPIPS: An Adversarially Robust Perceptual Similarity Metric [71.33812578529006]
We propose the Robust Learned Perceptual Image Patch Similarity (R-LPIPS) metric.
R-LPIPS is a new metric that leverages adversarially trained deep features.
We demonstrate the superiority of R-LPIPS compared to the classical LPIPS metric.
arXiv Detail & Related papers (2023-07-27T19:11:31Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
This paper proposes a probabilistic deep metric learning framework for hyperspectral image classification.
It aims to predict the category of each pixel for an image captured by hyperspectral sensors.
Our framework can be readily applied to existing hyperspectral image classification methods.
arXiv Detail & Related papers (2022-11-15T17:57:12Z) - A study of deep perceptual metrics for image quality assessment [3.254879465902239]
We study perceptual metrics based on deep neural networks for tackling the Image Quality Assessment (IQA) task.
We propose our multi-resolution perceptual metric (MR-Perceptual) that allows us to aggregate perceptual information at different resolutions.
arXiv Detail & Related papers (2022-02-17T14:52:53Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Image Quality Assessment: Unifying Structure and Texture Similarity [38.05659069533254]
We develop the first full-reference image quality model with explicit tolerance to texture resampling.
Using a convolutional neural network, we construct an injective and differentiable function that transforms images to overcomplete representations.
arXiv Detail & Related papers (2020-04-16T16:11:46Z) - Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics [60.92229707497999]
We introduce a novel principle for self-supervised feature learning based on the discrimination of specific transformations of an image.
We demonstrate experimentally that learning to discriminate transformations such as LCI, image warping and rotations, yields features with state of the art generalization capabilities.
arXiv Detail & Related papers (2020-04-05T22:09:08Z) - Geometrically Mappable Image Features [85.81073893916414]
Vision-based localization of an agent in a map is an important problem in robotics and computer vision.
We propose a method that learns image features targeted for image-retrieval-based localization.
arXiv Detail & Related papers (2020-03-21T15:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.