Data Quality Matters: Quantifying Image Quality Impact on Machine Learning Performance
- URL: http://arxiv.org/abs/2503.22375v1
- Date: Fri, 28 Mar 2025 12:28:44 GMT
- Title: Data Quality Matters: Quantifying Image Quality Impact on Machine Learning Performance
- Authors: Christian Steinhauser, Philipp Reis, Hubert Padusinski, Jacob Langner, Eric Sax,
- Abstract summary: This paper presents a framework to evaluate the impact of image modifications on machine learning tasks.<n>The LPIPS metric achieves the highest correlation between image deviation and machine learning performance.
- Score: 0.1398098625978622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise perception of the environment is essential in highly automated driving systems, which rely on machine learning tasks such as object detection and segmentation. Compression of sensor data is commonly used for data handling, while virtualization is used for hardware-in-the-loop validation. Both methods can alter sensor data and degrade model performance. This necessitates a systematic approach to quantifying image validity. This paper presents a four-step framework to evaluate the impact of image modifications on machine learning tasks. First, a dataset with modified images is prepared to ensure one-to-one matching image pairs, enabling measurement of deviations resulting from compression and virtualization. Second, image deviations are quantified by comparing the effects of compression and virtualization against original camera-based sensor data. Third, the performance of state-of-the-art object detection models is analyzed to determine how altered input data affects perception tasks, including bounding box accuracy and reliability. Finally, a correlation analysis is performed to identify relationships between image quality and model performance. As a result, the LPIPS metric achieves the highest correlation between image deviation and machine learning performance across all evaluated machine learning tasks.
Related papers
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Sensitivity-Informed Augmentation for Robust Segmentation [21.609070498399863]
Internal noises such as variations in camera quality or lens distortion can affect the performance of segmentation models.
We present an efficient, adaptable, and gradient-free method to enhance the robustness of learning-based segmentation models across training.
arXiv Detail & Related papers (2024-06-03T15:25:45Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - An Ensemble Model for Distorted Images in Real Scenarios [0.0]
In this paper, we apply the object detector YOLOv7 to detect distorted images from the CDCOCO dataset.
Through carefully designed optimizations, our model achieves excellent performance on the CDCOCO test set.
Our denoising detection model can denoise and repair distorted images, making the model useful in a variety of real-world scenarios and environments.
arXiv Detail & Related papers (2023-09-26T15:12:55Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - DeltaNN: Assessing the Impact of Computational Environment Parameters on the Performance of Image Recognition Models [2.379078565066793]
Failure in real-time image recognition tasks can occur due to sub-optimal mapping on hardware accelerators.
We present a differential testing framework, DeltaNN, that allows us to assess the impact of different computational environment parameters on the performance of image recognition models.
arXiv Detail & Related papers (2023-06-05T23:07:01Z) - Exploring Effects of Computational Parameter Changes to Image
Recognition Systems [0.802904964931021]
Failure in real-time image recognition tasks can occur due to incorrect mapping on hardware accelerators.
It is imperative to assess their robustness to changes in the computational environment.
arXiv Detail & Related papers (2022-11-01T14:00:01Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data [0.0]
This paper demonstrates how to construct, use, and evaluate a high performance unsupervised machine learning system for classifying images.
We use the VGG16 convolutional neural network pre-trained on the ImageNet dataset of natural images to extract feature representations for each micrograph.
The approach achieves $99.4% pm 0.16%$ accuracy, and the resulting model can be used to classify new images without retraining.
arXiv Detail & Related papers (2020-07-16T14:36:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.