論文の概要: Adaptive teachers for amortized samplers
- arxiv url: http://arxiv.org/abs/2410.01432v1
- Date: Wed, 2 Oct 2024 11:33:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:09:23.638568
- Title: Adaptive teachers for amortized samplers
- Title(参考訳): 償却標本作成者のための適応型教師
- Authors: Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-Brooks, Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, Yoshua Bengio,
- Abstract要約: 償却推論(英: Amortized inference)とは、ニューラルネットワークなどのパラメトリックモデルをトレーニングし、正確なサンプリングが可能な所定の非正規化密度で分布を近似するタスクである。
オフ・ポリティクスのRLトレーニングは多様でハイ・リワードな候補の発見を促進するが、既存の手法は依然として効率的な探索の課題に直面している。
そこで本研究では,高次領域の優先順位付けにより,初等補正標本作成者(学生)の指導を指導する適応学習分布(教師)を提案する。
- 参考スコア(独自算出の注目度): 76.88721198565861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnormalized density where exact sampling is intractable. When sampling is implemented as a sequential decision-making process, reinforcement learning (RL) methods, such as generative flow networks, can be used to train the sampling policy. Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration. We propose to use an adaptive training distribution (the Teacher) to guide the training of the primary amortized sampler (the Student) by prioritizing high-loss regions. The Teacher, an auxiliary behavior model, is trained to sample high-error regions of the Student and can generalize across unexplored modes, thereby enhancing mode coverage by providing an efficient training curriculum. We validate the effectiveness of this approach in a synthetic environment designed to present an exploration challenge, two diffusion-based sampling tasks, and four biochemical discovery tasks demonstrating its ability to improve sample efficiency and mode coverage.
- Abstract(参考訳): 償却推論(英: Amortized inference)とは、ニューラルネットワークなどのパラメトリックモデルをトレーニングし、正確なサンプリングが可能な所定の非正規化密度で分布を近似するタスクである。
サンプリングをシーケンシャルな意思決定プロセスとして実施する場合、生成フローネットワークなどの強化学習(RL)手法を用いてサンプリングポリシーのトレーニングを行うことができる。
オフ・ポリティクスのRLトレーニングは多様でハイ・リワードな候補の発見を促進するが、既存の手法は依然として効率的な探索の課題に直面している。
そこで本研究では,高次領域の優先順位付けにより,適応的なトレーニング分布(教師)を用いて,初等補正標本作成者(学生)のトレーニングを指導することを提案する。
補助行動モデルである教師は、学生のハイエラー領域をサンプリングするように訓練され、探索されていないモードをまたいで一般化することができ、効率的な訓練カリキュラムを提供することでモードカバレッジを向上させることができる。
提案手法の有効性を, 探索課題, 拡散に基づく2つのサンプリング課題, および, 試料効率とモードカバレッジを向上させる能力を示す4つの生化学的発見課題を示す合成環境において検証した。
関連論文リスト
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
本稿では,テスト時間適応フレームワークを提案する。
我々は、インスタンスに依存しない履歴サンプルとインスタンスを意識したブースティングサンプルから特徴を検索するための軽量なキー値メモリを維持している。
理論的には,本手法の背後にある合理性を正当化し,アウト・オブ・ディストリビューションとクロスドメイン・データセットの両方において,その有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-20T15:58:43Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
本研究では,非正規化密度やエネルギー関数を持つ分布からサンプルを抽出する拡散モデルの訓練問題について検討する。
シミュレーションに基づく変分法や非政治手法など,拡散構造推論手法のベンチマークを行った。
我々の結果は、過去の研究の主張に疑問を投げかけながら、既存のアルゴリズムの相対的な利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-07T18:51:49Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Entropy-based Training Methods for Scalable Neural Implicit Sampler [15.978655106034113]
非正規化対象分布からの効率的なサンプリングは、科学計算と機械学習の基本的な問題である。
本稿では,これらの制約を克服する,効率的でスケーラブルなニューラル暗黙サンプリング手法を提案する。
提案手法では, 提案手法を応用して, 提案手法を用いることにより, 精度の低い大量のサンプルを生成できる。
論文 参考訳(メタデータ) (2023-06-08T05:56:05Z) - Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling
in Offline Reinforcement Learning [44.880922634512096]
本稿では、誘導が(正規化されていない)エネルギー関数によって定義される一般的な設定について考察する。
この設定の主な課題は、拡散サンプリング手順中の中間ガイダンスが未知であり、推定が難しいことである。
本稿では,中間ガイダンスの正確な定式化と,CEP(Contrative Energy Prediction)と呼ばれる新たなトレーニング目標を提案する。
論文 参考訳(メタデータ) (2023-04-25T13:50:41Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
強化学習(RL)による拡散モデルの学習段階を導く新しい枠組みを提案する。
RLは、政策そのものではなく、指数スケールの報酬に比例したペイオフ分布からのサンプルによる政策勾配を計算することができる。
3次元形状と分子生成タスクの実験は、既存の条件拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-14T13:51:26Z) - Sampling Through the Lens of Sequential Decision Making [9.101505546901999]
我々はアダプティブ・サンプル・ウィズ・リワード(ASR)と呼ばれる報酬誘導型サンプリング戦略を提案する。
提案手法は,サンプリング過程を最適に調整し,最適性能を実現する。
情報検索とクラスタリングの実証的な結果は、異なるデータセット間でのASRのスーパーブパフォーマンスを示している。
論文 参考訳(メタデータ) (2022-08-17T04:01:29Z) - AutoSampling: Search for Effective Data Sampling Schedules [118.20014773014671]
モデル学習のためのサンプリングスケジュールを自動的に学習するAutoSampling法を提案する。
提案手法の有効性を示す様々な画像分類タスクに本手法を適用した。
論文 参考訳(メタデータ) (2021-05-28T09:39:41Z) - Learning Continuous Cost-to-Go Functions for Non-holonomic Systems [40.443409760112395]
本稿では,非ホロノミックシステムの連続的なコスト対ゴー関数を生成するための教師付き学習手法を提案する。
その結果,ネットワークは障害物を回避しつつ,非ホロノミックシステムに対して最適に近い軌道を生成できることがわかった。
論文 参考訳(メタデータ) (2021-03-20T12:31:08Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。