Unbiased Graph Embedding with Biased Graph Observations
- URL: http://arxiv.org/abs/2110.13957v1
- Date: Tue, 26 Oct 2021 18:44:37 GMT
- Title: Unbiased Graph Embedding with Biased Graph Observations
- Authors: Nan Wang, Lu Lin, Jundong Li, Hongning Wang
- Abstract summary: We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
- Score: 52.82841737832561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph embedding techniques have been increasingly employed in real-world
machine learning tasks on graph-structured data, such as social recommendations
and protein structure modeling. Since the generation of a graph is inevitably
affected by some sensitive node attributes (such as gender and age of users in
a social network), the learned graph representations can inherit such sensitive
information and introduce undesirable biases in downstream tasks. Most existing
works on debiasing graph representations add ad-hoc constraints on the learned
embeddings to restrict their distributions, which however compromise the
utility of resulting graph representations in downstream tasks.
In this paper, we propose a principled new way for obtaining unbiased
representations by learning from an underlying bias-free graph that is not
influenced by sensitive attributes. Based on this new perspective, we propose
two complementary methods for uncovering such an underlying graph with the goal
of introducing minimum impact on the utility of learned representations in
downstream tasks. Both our theoretical justification and extensive experiment
comparisons against state-of-the-art solutions demonstrate the effectiveness of
our proposed methods.
Related papers
- Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection [30.618065157205507]
We propose a novel approach, Motif-consistent Counterfactuals with Adversarial Refinement (MotifCAR) for graph-level anomaly detection.
The model combines the motif of one graph, the core subgraph containing the identification (category) information, and the contextual subgraph of another graph to produce a raw counterfactual graph.
MotifCAR can generate high-quality counterfactual graphs.
arXiv Detail & Related papers (2024-07-18T08:04:57Z) - Fairness-aware Optimal Graph Filter Design [25.145533328758614]
Graphs are mathematical tools that can be used to represent complex real-world interconnected systems.
Machine learning (ML) over graphs has attracted significant attention recently.
We take a fresh look at the problem of bias mitigation in graph-based learning by borrowing insights from graph signal processing.
arXiv Detail & Related papers (2023-10-22T22:40:40Z) - FairGen: Towards Fair Graph Generation [76.34239875010381]
We propose a fairness-aware graph generative model named FairGen.
Our model jointly trains a label-informed graph generation module and a fair representation learning module.
Experimental results on seven real-world data sets, including web-based graphs, demonstrate that FairGen obtains performance on par with state-of-the-art graph generative models.
arXiv Detail & Related papers (2023-03-30T23:30:42Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
Existing explanation methods focus on the supervised settings, eg, node classification and graph classification, while the explanation for unsupervised graph-level representation learning is still unexplored.
In this paper, we advance the Information Bottleneck principle (IB) to tackle the proposed explanation problem for unsupervised graph representations, which leads to a novel principle, textitUnsupervised Subgraph Information Bottleneck (USIB)
We also theoretically analyze the connection between graph representations and explanatory subgraphs on the label space, which reveals that the robustness of representations benefit the fidelity of explanatory subgraphs.
arXiv Detail & Related papers (2022-05-20T02:50:15Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
We introduce a self-supervised learning method to enhance the representations of graph-level learned by Graph Neural Networks.
To get a comprehensive understanding of the graph structure, we propose an ensemble-learning like subgraph method.
And to achieve efficient and effective contrasive learning, a Head-Tail contrastive samples construction method is proposed.
arXiv Detail & Related papers (2021-03-24T12:06:12Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.